Computed tomography fluoroscopy is now the preferred technique for percutaneous lung biopsies. However, concern regarding operator and patient radiation dose remains, which warrants further exploration into dose optimisation tools. This phantom-study aims to assess the dose reduction capabilities of RADPAD, a single-use patient drape designed to decrease staff exposure to scattered radiation. Dosemeters at the waist and eye levels were used to determine the whole-body and lens exposure during simulated lung biopsy procedures while using RADPAD and other combinations of personal protective equipment. RADPAD resulted in a 36% and 38% dose reduction for whole-body and eye exposure, respectively. However, when used in combination with radioprotective eyewear and aprons, RADPAD did not reduce the radiation dose further. Consequently, the use of standard personal protective equipment is a more cost-effective option for staff dose reduction. RADPAD is useful in the reduction of radiation dose to unprotected regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/rpd/ncaa169 | DOI Listing |
Med Phys
January 2025
OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.
Background: Patient-specific quality assurance (PSQA) is a crucial yet resource-intensive task in proton therapy, requiring special equipment, expertise and additional beam time. Machine delivery log files contain information about energy, position and monitor units (MU) of all delivered spots, allowing a reconstruction of the applied dose. This raises the prospect of phantomless, log file-based QA (LFQA) as an automated replacement of current phantom-based solutions, provided that such an approach guarantees a comparable level of safety.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
Background: Diffusing alpha-emitters Radiation Therapy ("Alpha DaRT") is a promising new radiation therapy modality for treating bulky tumors. Ra-carrying sources are inserted intratumorally, producing a therapeutic alpha-dose region with a total size of a few millimeter via the diffusive motion of Ra's alpha-emitting daughters. Clinical studies of Alpha DaRT have reported 100% positive response (30%-100% shrinkage within several weeks), with post-insertion swelling in close to half of the cases.
View Article and Find Full Text PDFMed Phys
January 2025
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
Background: Online adaptive radiotherapy (OART) and rapid quality assurance (QA) are essential for effective heavy ion therapy (HIT). However, there is a shortage of deep learning (DL) models and workflows for predicting Monte Carlo (MC) doses in such treatments.
Purpose: This study seeks to address this gap by developing a DL model for independent MC dose (MCDose) prediction, aiming to facilitate OART and rapid QA implementation for HIT.
Z Orthop Unfall
January 2025
Geschäftsstelle Mannheim, Deutsche Arthrose-Hilfe e.V., Mannheim, Deutschland.
Low-dose radiotherapy is an established treatment option for non-malignant skeletal disorders. It is used in the treatment of Heberden's osteoarthritis (HA), but the evidence of efficacy does not seem to be certain. This paper reviews current literature for scientific evidence of efficacy in the treatment of HA.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
January 2025
Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Purpose: This study evaluates the feasibility of utilizing robotic-assisted bronchoscopy with cone beam computed tomography (RB-CBCT) platform to perform low-dose-rate brachytherapy implants (LDR-BT) in a mechanically ventilated human cadaveric model. Post-implant dosimetry was compared to standard stereotactic body radiation therapy plans (SBRT).
Materials And Methods: The RB-CBCT platform was used to place inert LDR-BT seeds into mechanically ventilated human cadavers with percutaneously injected pseudotumors.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!