Comparison of deep learning synthesis of synthetic CTs using clinical MRI inputs.

Phys Med Biol

Department of Radiology, University of Wisconsin, Madison, Wisconsin, United States of America.

Published: December 2020

There has been substantial interest in developing techniques for synthesizing CT-like images from MRI inputs, with important applications in simultaneous PET/MR and radiotherapy planning. Deep learning has recently shown great potential for solving this problem. The goal of this research was to investigate the capability of four common clinical MRI sequences (T1-weighted gradient-echo [T1], T2-weighted fat-suppressed fast spin-echo [T2-FatSat], post-contrast T1-weighted gradient-echo [T1-Post], and fast spin-echo T2-weighted fluid-attenuated inversion recovery [CUBE-FLAIR]) as inputs into a deep CT synthesis pipeline. Data were obtained retrospectively in 92 subjects who had undergone an MRI and CT scan on the same day. The patient's MR and CT scans were registered to one another using affine registration. The deep learning model was a convolutional neural network encoder-decoder with skip connections similar to the U-net architecture and Inception V3 inspired blocks instead of sequential convolution blocks. After training with 150 epochs and a batch size of 6, the model was evaluated using structural similarity index (SSIM), peak SNR (PSNR), mean absolute error (MAE), and dice coefficient. We found that feasible results were attainable for each image type, and no single image type was superior for all analyses. The MAE (in HU) of the resulting synthesized CT in the whole brain was 51.236 ± 4.504 for CUBE-FLAIR, 45.432 ± 8.517 for T1, 44.558 ± 7.478 for T1-Post, and 45.721 ± 8.7767 for T2, showing not only feasible, but also very compelling results on clinical images. Deep learning-based synthesis of CT images from MRI is possible with a wide range of inputs, suggesting that viable images can be created from a wide range of clinical input types.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162064PMC
http://dx.doi.org/10.1088/1361-6560/abc5cbDOI Listing

Publication Analysis

Top Keywords

deep learning
12
clinical mri
8
mri inputs
8
images mri
8
t1-weighted gradient-echo
8
fast spin-echo
8
image type
8
wide range
8
mri
5
comparison deep
4

Similar Publications

In the fields of engineering, science, technology, and medicine, artificial intelligence (AI) has made significant advancements. In particular, the application of AI techniques in medicine, such as machine learning (ML) and deep learning (DL), is rapidly growing and offers great potential for aiding physicians in the early diagnosis of illnesses. Depression, one of the most prevalent and debilitating mental illnesses, is projected to become the leading cause of disability worldwide by 2040.

View Article and Find Full Text PDF

Transformers for Neuroimage Segmentation: Scoping Review.

J Med Internet Res

January 2025

Department of Computer Science and Software Engineering, United Arab Emirates University, Al Ain, United Arab Emirates.

Background: Neuroimaging segmentation is increasingly important for diagnosing and planning treatments for neurological diseases. Manual segmentation is time-consuming, apart from being prone to human error and variability. Transformers are a promising deep learning approach for automated medical image segmentation.

View Article and Find Full Text PDF

Background: Estimating the prevalence of schizophrenia in the general population remains a challenge worldwide, as well as in Japan. Few studies have estimated schizophrenia prevalence in the Japanese population and have often relied on reports from hospitals and self-reported physician diagnoses or typical schizophrenia symptoms. These approaches are likely to underestimate the true prevalence owing to stigma, poor insight, or lack of access to health care among respondents.

View Article and Find Full Text PDF

Pathway analysis plays a critical role in bioinformatics, enabling researchers to identify biological pathways associated with various conditions by analyzing gene expression data. However, the rise of large, multi-center datasets has highlighted limitations in traditional methods like Over-Representation Analysis (ORA) and Functional Class Scoring (FCS), which struggle with low signal-to-noise ratios (SNR) and large sample sizes. To tackle these challenges, we use a deep learning-based classification method, Gene PointNet, and a novel $P$-value computation approach leveraging the confusion matrix to address pathway analysis tasks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!