The isomerization of l-amino acids in peptides and proteins into d-configuration under physiological conditions would affect the physiological dysfunction and caused protein conformational diseases. The presence of d-amino acids might change the higher-order structure of proteins and triggered abnormal aggregation. In order to better understand this phenomenon and promote degradation, we systematically studied the enzymatic hydrolysis of a series of peptides obtained by replacing l-amino acids in different positions of template peptide KYNETWRSED with d-amino acids under the action of Protease K. The results showed that, compared with normal peptide, isomerization of different amino acids had different effects on the anti-enzymatic hydrolysis of the peptides, especially d-tryptophan at position 6, which significantly inhibited enzymatic hydrolysis. The analysis of the peptide cleavage site revealed that the efficiency of enzymatic hydrolysis mainly depended on the isomerization of the amino acids at a specific site of the peptide cleavage. Further studies showed that the enzymatic hydrolysis of substrates could be facilitated by optimized reaction conditions such as temperature, pH, addition of metal ions, and change of buffer. In this way the accumulation of disease-associated d-amino acid containing polypeptides/proteins could be prevented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2020.104389 | DOI Listing |
Polymers (Basel)
December 2024
Department of Engineering, Pegaso Telematic University, 80143 Naples, Italy.
Lactic acid (LA) is a versatile, optically active compound with applications across the food, cosmetics, pharmaceutical, and chemical industries, largely driven by its role in producing biodegradable polylactic acid (PLA). Due to its abundance, lignocellulosic biomass is a promising and sustainable resource for LA production, although media derived from these matrices are often rich in xylose and contain growth inhibitors. This study investigates LA production using a xylose-rich medium derived from DC stalks treated through steam explosion and enzymatic hydrolysis.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemical, Environmental and Materials Engineering, Higher Polytechnical School of University of Jaén, Avda. de la Universidad s/n, 23700 Linares, Spain.
A sequential valorization process of sunflower stalks was carried out using nitric acid (0.1-2 mol dm) as a hydrolytic agent and fermenting the hydrolysate of higher sugar concentration in the presence of the non-conventional yeast . Values reached for ethanol yield (0.
View Article and Find Full Text PDFToxics
November 2024
Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague, Czech Republic.
The level of the human body's burden of benzophenone and camphor ultraviolet (UV) filters can be estimated from their urinary levels. The present study describes the implementations and validation of the sensitive analytical method for the analysis of seven benzophenone and two camphor UV filters in urine. Sample preparation includes overnight enzymatic hydrolysis and ethyl acetate extraction followed by purification by dispersive solid-phase extraction using a sorbent Z-Sep.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria.
Baker's yeast is a key starting material for producing extracts with diverse compositions and applications. This study investigates the effect of pulsed electric field (PEF) pretreatment, which induces irreversible electropermeabilization, on the enzymatic hydrolysis of yeast. Cell suspensions were exposed to monopolar rectangular pulses in a continuous flow system followed by 4 h of incubation with Alcalase at concentrations of 0.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China.
Marine microalgae are a rich source of natural products, and their amino acid-based antimicrobial agents are usually obtained by enzymatic hydrolysis, which is inefficient and limits the research on antimicrobial peptides (AMPs) from microalgae. In this study, is used as a model to predict antimicrobial peptides through high-throughput methods, and 471 putative peptides are identified based on the de novo transcriptome technique. Among them, three short peptides, P1, P6, and P7 were found to have antimicrobial activity against , , , and yeast , and they showed no hemolytic activity even at higher concentrations up to 10 mg/mL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!