Therapeutic effect of decellularized extracellular matrix-based hydrogel for radiation esophagitis by 3D printed esophageal stent.

Biomaterials

Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea; Center for Rapid Prototyping based 3D Tissue/Organ Printing, Pohang University of Science and Technology, Pohang, South Korea; Postech-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology, Pohang, South Korea; Institute of Convergence Science, Yonsei University, Seoul, South Korea. Electronic address:

Published: January 2021

Radiation esophagitis, the most common acute adverse effect of radiation therapy, leads to unwanted consequences including discomfort, pain, an even death. However, no direct cure exists for patients suffering from this condition, with the harmful effect of ingestion and acid reflux on the damaged esophageal mucosa remaining an unresolved problem. Through the delivery of the hydrogel with stent platform, we aimed to evaluate the regenerative capacity of a tissue-specific decellularized extracellular matrix (dECM) hydrogel on damaged tissues. For this, an esophagus-derived dECM (EdECM) was developed and shown to have superior biofunctionality and rheological properties, as well as physical stability, potentially providing a better microenvironment for tissue development. An EdECM hydrogel-loaded stent was sequentially fabricated using a rotating rod combined 3D printing system that showed structural stability and protected a loaded hydrogel during delivery. Finally, following stent implantation, the therapeutic effect of EdECM was examined in a radiation esophagitis rat model. Our findings demonstrate that EdECM hydrogel delivery via a stent platform can rapidly resolve an inflammatory response, thus promoting a pro-regenerative microenvironment. The results suggest a promising therapeutic strategy for the treatment of radiation esophagitis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2020.120477DOI Listing

Publication Analysis

Top Keywords

radiation esophagitis
16
decellularized extracellular
8
stent platform
8
hydrogel delivery
8
hydrogel
5
radiation
5
stent
5
therapeutic decellularized
4
extracellular matrix-based
4
matrix-based hydrogel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!