In case of a nuclear accident, adequate protection of the public and the environment requires timely assessment of the short- and long-term radiological exposure. Measurements of the radiation dose and the radioactive contamination in the environment are essential for the optimization of radiation protection and the decision making process. In the early phase, however, such measurements are rarely available or sufficient.To compensate for the lack of monitoring data during nuclear emergencies, especially in the early phase of the emergency, mathematical models are frequently used to assess the temporal and spatial distribution of radioactive contamination. During the transition and recovery phase, models are typically used to optimise remediation strategies by assessing the cost-effectiveness of different countermeasures. A prerequisite of course is that these models are fit for purpose. Different models may be needed during different phases of the accident. In this paper, we discuss the role of radioecological models during a nuclear emergency, and give an outlook on the scientific challenges which need to be addressed to further improve our predictions of human and wildlife exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvrad.2020.106444 | DOI Listing |
J Am Chem Soc
January 2025
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
Metal oxide materials have found wide applications across diverse fields; in most cases, their functionalities are dictated by their surface structures and properties. A comprehensive understanding of the intricate surface features is critical for their further design, optimization, and applications, necessitating multi-faceted characterizations. Recent advances in solid-state nuclear magnetic resonance (ssNMR) spectroscopy have significantly extended its applications in the detailed analysis of multiple metal oxide nanoparticles, offering unparalleled atomic-level information on the surface structures, properties, and chemistries.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China.
The orphan nuclear receptor Nur77 is emerging as an attractive target for cancer therapy, and activating Nur77's non-genotypic anticancer function has demonstrated strong therapeutic potential. However, few Nur77 site B ligands have been identified as excellent anticancer compounds. There are no co-crystal structures of effective anticancer agents at Nur77 site B, which greatly limits the development of novel Nur77 site B ligands.
View Article and Find Full Text PDFJ Ovarian Res
January 2025
Department of Urology, Zigong Fourth People's Hospital, Zigong, Sichuan, China.
Background: Granulosa cell proliferation and survival are essential for normal ovarian function and follicular development. Long non-coding RNAs (lncRNAs) have emerged as important regulators of cell proliferation and differentiation. Nuclear paraspeckle assembly transcript 1 (NEAT1) has been implicated in various cellular processes, but its role in granulosa cell function remains unclear.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 119074, Singapore.
The emerging combination of chemotherapy and radionuclide therapy has been actively investigated to overcome the limitations of monotherapy and augment therapeutic efficacy. However, it remains a challenge to design a single delivery vehicle that can incorporate chemotherapeutics and radionuclides into a compact structure. Here, a chelator DOTA- or NOTA-modified Evans blue conjugated camptothecin molecule (EB-CPT) nanoprodrug was synthesized, which could self-assemble into nanoparticles due to its inherent amphiphilicity.
View Article and Find Full Text PDFMol Imaging Biol
January 2025
Department of Nuclear Medicine, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
Purpose: Radionuclide-labeled fibroblast activation protein inhibitor (FAPI) is an emerging tumor tracer. We sought to assess the uptake and diagnostic performance of F-FAPI-42 PET/CT compared with simultaneous 2-deoxy-2[F]fluoro-D-glucose (F-FDG) PET/CT in primary and metastatic lesions in patients with malignant digestive system neoplasms and to determine the potential clinical benefit.
Procedures: Forty-two patients (men = 30, women = 12, mean age = 56.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!