Toxicity monitoring of harmful radiation is an indispensable issue in modern radioecology. As bioluminescent bacteria have the simplest structure to epitomize the biosphere, their bioluminescence can also act as an indicator of the conditions, therefore assay systems based on luminous bacteria can be used to monitor environmental radiotoxicity. The present investigation explored the measurement of bacterial luminescence, which can be easily computed. Bioluminescent bacterial strains were used to evaluate the effect of ultraviolet (UV) and gamma irradiation. A random amplified polymorphic DNA (RAPD) assay was carried out to observe alterations under exposure. Using a phylogenetic tree, a comparative study of the effect of UV and gamma rays was carried out. The isolated strains showed marked sensitivity towards radiation exposure present in the environment and therefore they could be used as potential biosensing elements for developing an on-site pollution monitoring biosensor.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bio.3972DOI Listing

Publication Analysis

Top Keywords

ultraviolet gamma
8
influence ultraviolet
4
gamma ray
4
ray irradiation
4
irradiation luminescent
4
luminescent bacteria
4
bacteria exploring
4
exploring efficacy
4
efficacy biosensors
4
biosensors toxicity
4

Similar Publications

In Saccharomyces cerevisiae cells, the bulk of mitochondrial DNA (mtDNA) replication is mediated by the replicative high-fidelity DNA polymerase γ. However, upon UV irradiation low-fidelity translesion polymerases: Polη, Polζ and Rev1, participate in an error-free replicative bypass of UV-induced lesions in mtDNA. We analysed how translesion polymerases could function in mitochondria.

View Article and Find Full Text PDF

Advances in nanomaterials for radiation protection in the aerospace industry: a systematic review.

Nanotechnology

December 2024

CCTS/DFQM, UFSCar - Campus Sorocaba, Rod. João Leme dos Santos km 110 - SP-264 Bairro do Itinga - Sorocaba CEP 18052-780, Sorocaba, 18052-780, BRAZIL.

Nanomaterials stand out for their exceptional properties and innovative potential, especially in applications that protect against space radiation. They offer an innovative approach to this challenge, demonstrating notable properties of radiation absorption and scattering, as well as flexibility and lightness for the development of protective clothing and equipment. This review details the use of polymeric materials, such as polyimides (PIs), which are efficient at attenuating ultraviolet (UV) radiation and atomic oxygen (AO).

View Article and Find Full Text PDF

Background: Vitiligo is a chronic autoimmune disease manifested by depigmented patches of skin devoid of melanocytes. Baricitinib, a JAK inhibitor selectively targeting JAK1/2, has shown preliminary efficacy for vitiligo. We aimed to assess the efficacy and tolerability of combination therapy with baricitinib and narrowband UV-B (NB-UVB) to treat active nonsegmental vitiligo (NSV).

View Article and Find Full Text PDF

Barium fluoride borosilicate glass samples reinforced with varying amounts of GdO (BSBLG0-BSBLG4) have been manufactured using the conventional melt quenching procedure in order to provide additional research on the type of borosilicate glass. Structural, physical, and linear optical characteristics as well as γ-ray attenuation capacity of barium fluoride borosilicate doped with GdO was investigated. X-ray diffraction pattern proving the amorphous nature of the glass samples due to the absence of a distinctive crystalline characteristic peak.

View Article and Find Full Text PDF

Balance of Unimolecular and Bimolecular Pathways Control the Temperature-Dependent Kinetics of Ozonolysis in Aerosols.

J Phys Chem A

December 2024

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

To better understand the key kinetic mechanisms controlling heterogeneous oxidation in organic aerosols, submicron particles composed of an alkene and a saturated carboxylic acid are exposed to ozone in a variable-temperature flow tube reactor. Effective uptake coefficients (γ) are obtained from the multiphase reaction kinetics, which are quantified by Vacuum Ultraviolet Photoionization Aerosol Mass Spectrometry. For aerosols composed of only of alkenes, γ doubles (from 6 × 10 to 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!