Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Optogenetic reagents allow for depolarization and hyperpolarization of cells with light. This provides unprecedented spatial and temporal resolution to the control of neuronal activity both in vitro and in vivo. In the intact animal this requires strategies to deliver light deep into the highly scattering tissue of the brain. A general approach that we describe here is to implant optical fibers just above brain regions targeted for light delivery. In part due to the fact that expression of optogenetic proteins is accomplished by techniques with inherent variability (e.g., viral expression levels), it also requires strategies to measure and calibrate the effect of stimulation. Here we describe general procedures that allow one to simultaneously stimulate neurons and use photometry with genetically encoded activity indicators to precisely calibrate stimulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-0818-0_14 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!