Background: With the advance of subthalamic nucleus (STN) deep brain stimulation (DBS) in the treatment of Parkinson's disease (PD), it is desired to identify objective criteria for the monitoring of the therapy outcome. This paper explores the feasibility of metabolic network derived from positron emission tomography (PET) with F-fluorodeoxyglucose in monitoring the STN DBS treatment for PD.
Methods: Age-matched 33 PD patients, 33 healthy controls (HCs), 9 PD patients with bilateral DBS surgery and 9 controls underwent F-FDG PET scans. The DBS patients were followed longitudinally to investigate the alternations of the PD-related metabolic covariance pattern (PDRP) expressions.
Results: The PDRP expression was abnormally elevated in PD patients compared with HCs (P < 0.001). For DBS patients, a significant decrease in the Unified Parkinson's Disease Rating Scale (UPDRS, P = 0.001) and PDRP expression (P = 0.004) was observed 3 months after STN DBS treatment, while a rollback was observed in both UPDRS and PDRP expressions (both P < 0.01) 12 months after treatment. The changes in PDRP expression mediated by STN DBS were generally in line with UPDRS improvement. The graphical network analysis shows increased connections at 3 months and a return at 12 months confirmed by small-worldness coefficient.
Conclusions: The preliminary results demonstrate the potential of metabolic network expression as complimentary objective biomarker for the assessment and monitoring of STN DBS treatment in PD patients. Clinical Trial Registration ChiCTR-DOC-16008645. http://www.chictr.org.cn/showproj.aspx?proj=13865 .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596139 | PMC |
http://dx.doi.org/10.1186/s13550-020-00722-1 | DOI Listing |
Alzheimers Dement
December 2024
University of Michigan, Ann Arbor, MI, USA.
Background: Inhibitory interneurons normally regulate neural networks underlying memory and cognition, but are disrupted in Alzheimer's disease. Proper interneuron activity reduces amyloid-beta, whereas hyperexcitability elevates amyloid levels. Still, the underlying pathologic processes mediating interneuron dysfunction remain unknown.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
Background: Progressive supranuclear palsy (PSP) is a neurodegenerative disorder involving pathological deposition of tau that includes glial inclusions and specific regional vulnerability patterns. Therapeutic developments are hampered by incomplete understanding of disease mechanisms. Few studies have examined its cell type-specific effects.
View Article and Find Full Text PDFPhysiol Genomics
January 2025
Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
We examined the effects of a 20-week exercise intervention on whole-blood genome-wide DNA methylation signature and its association with the exercise-induced changes in gene expression profiles in boys and girls with overweight/obesity (OW/OB). Twenty-three children (10.05 ± 1.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
German Center for Neurodegenerative Diseases (DZNE), Bonn, NRW, Germany; Institute of Innate Immunity, Bonn, NRW, Germany.
Background: Western-diet (WD) can induce sterile inflammation and epigenetic reprogramming of myeloid cells, affecting their immune response (Christ et al., 2018). However, the molecular signaling mediating these changes was unknown.
View Article and Find Full Text PDFBackground: There is currently an unmet need for novel accessible biomarkers that capture the complex and heterogenous pathophysiology of Alzheimer's disease (AD). Over the past decade, the systems-based multi-omic approaches employed by the Accelerating Medicines Partnership in AD (AMP-AD) have resulted in the identification of promising peripheral markers of disease heterogeneity. This scientific review will highlight these advances with a particular focus on the consortium's successes in peripheral protein biomarker discovery in cerebrospinal fluid (CSF) and plasma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!