This study builds upon the literature documenting gender disparities in science by investigating research productivity and recognition among elite scientists in three countries. This analysis departs from both the general comparison of researchers across organizational settings and academic appointments on one hand, and the definition of "elite" by the research outcome variables on the other, which are common in previous studies. Instead, this paper's approach considers the stratification of scientific careers by carefully constructing matched samples of men and women holding research chairs in Canada, the United States and South Africa, along with a control group of departmental peers. The analysis is based on a unique, hand-curated dataset including 943 researchers, which allows for a systematic comparison of successful scientists vetted through similar selection mechanisms. Our results show that even among elite scientists a pattern of stratified productivity and recognition by gender remains, with more prominent gaps in recognition. Our results point to the need for gender equity initiatives in science policy to critically examine assessment criteria and evaluation mechanisms to emphasize multiple expressions of research excellence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595278 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0240903 | PLOS |
Anal Chem
January 2025
School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China.
Organophosphorus pesticides (OPs) are widely used in agricultural production, posing a great threat to human health and the environment. Given that different OPs present different toxicology and toxicities, identifying individual pesticide residues becomes important for assessing food safety and environmental implications. In this work, a kinetics difference-driven analyte hydrolysis strategy is proposed for the first time and validated to identify -nitrophenyl pesticides by developing an organophosphorus hydrolase-like nanozyme-coded sensor array.
View Article and Find Full Text PDFNano Lett
January 2025
National Laboratory of Solid States Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China.
While the highest-performing memristors currently available offer superior storage density and energy efficiency, their large-scale integration is hindered by the random distribution of filaments and nonuniform resistive switching in memory cells. Here, we demonstrate the self-organized synthesis of a type of two-dimensional protonic coordination polymers with high crystallinity and porosity. Hydrogen-bond networks containing proton carriers along its nanochannels enable uniform resistive switching down to the subnanoscale range.
View Article and Find Full Text PDFInt J Ment Health Nurs
February 2025
Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Indonesian adolescents face an increased risk of developing mental health conditions such as depression and anxiety, largely due to insufficient mental health literacy and awareness. This lack of knowledge often leads to delayed recognition and treatment. To address this, the present descriptive qualitative study explores Indonesian adolescents' perceptions of mental health challenges and needs.
View Article and Find Full Text PDFFront Microbiol
January 2025
School of Art of Wuhan Sports University, Wuhan, China.
The NOD-like receptor family pyrin domain-containing 3 (NLRP3) is a key pattern recognition receptor in the innate immune system. Its overactivation leads to the production of pro-inflammatory cytokines, such as IL-1β and IL-18, which contribute to the development and progression of various diseases. In recent years, evidence has shown that gut microbiota plays an important role in regulating the activation of NLRP3 inflammasome.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Hangzhou Dianzi University, College of Automation, CHINA.
The precise and rapid extraction of lithium from salt-lake brines is critical to meeting the global demand for lithium resources. However, it remains a major challenge to design ion-transport membranes with accurate recognition and fast transport path for the target ion. Here, we report a triazine covalent organic framework (COF) membrane with high resolution for Li+ and Mg2+ that enables fast Li+ transport while almost completely inhibiting Mg2+ permeation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!