Piwi-interacting RNAs (piRNAs) are a distinct sub-class of small non-coding RNAs that are mainly responsible for germline stem cell maintenance, gene stability, and maintaining genome integrity by repression of transposable elements. piRNAs are also expressed aberrantly and associated with various kinds of cancers. To identify piRNAs and their role in guiding target mRNA deadenylation, the currently available computational methods require urgent improvements in performance. To facilitate this, we propose a robust predictor based on a lightweight and simplified deep learning architecture using a convolutional neural network (CNN) to extract significant features from raw RNA sequences without the need for more customized features. The proposed model's performance is comprehensively evaluated using k-fold cross-validation on a benchmark dataset. The proposed model significantly outperforms existing computational methods in the prediction of piRNAs and their role in target mRNA deadenylation. In addition, a user-friendly and publicly-accessible web server is available at http://nsclbio.jbnu.ac.kr/tools/2S-piRCNN/.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCBB.2020.3034313DOI Listing

Publication Analysis

Top Keywords

convolutional neural
8
neural network
8
pirnas role
8
target mrna
8
mrna deadenylation
8
computational methods
8
pirnas
5
identification functional
4
functional pirnas
4
pirnas convolutional
4

Similar Publications

In recent years, the healthcare data system has expanded rapidly, allowing for the identification of important health trends and facilitating targeted preventative care. Heart disease remains a leading cause of death in developed countries, often leading to consequential outcomes such as dementia, which can be mitigated through early detection and treatment of cardiovascular issues. Continued research into preventing strokes and heart attacks is crucial.

View Article and Find Full Text PDF

Background: Meningioma, the most common primary brain tumor, presents significant challenges in MRI-based diagnosis and treatment planning due to its diverse manifestations. Convolutional Neural Networks (CNNs) have shown promise in improving the accuracy and efficiency of meningioma segmentation from MRI scans. This systematic review and meta-analysis assess the effectiveness of CNN models in segmenting meningioma using MRI.

View Article and Find Full Text PDF

Artificial intelligence (AI) is a subfield of computer science with the goal of creating intelligent machines (1) Machine learning is a branch of artificial intelligence. In machine learning a datasets are used for training diagnostic algorithms. This review comprehensively explains the applications of AI in the diagnosis in paediatric dentistry.

View Article and Find Full Text PDF

Attention-based deep learning for accurate cell image analysis.

Sci Rep

January 2025

XtalPi Innovation Center, 706 Block B, Dongsheng Building, Haidian District, Beijing, China.

High-content analysis (HCA) holds enormous potential for drug discovery and research, but widely used methods can be cumbersome and yield inaccurate results. Noisy and redundant signals in cell images impede accurate deep learning-based image analysis. To address these issues, we introduce X-Profiler, a novel HCA method that combines cellular experiments, image processing, and deep learning modeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!