Cortical inhibition, facilitation and plasticity in late-life depression: effects of venlafaxine pharmacotherapy.

J Psychiatry Neurosci

From the Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Lissemore, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Lissemore, Mulsant, Rajji, Downar, Daskalakis, Blumberger); the Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ont., Canada (Mulsant, Rajji, Daskalakis, Blumberger); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Karp, Reynolds); the Healthy Mind Lab, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA (Lenze); the MRI-Guided rTMS Clinic and Krembil Research Institute, University Health Network, Toronto, Ont., Canada (Downar); and the Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute Toronto, Ont., Canada (Chen).

Published: January 2021

Background: Late-life depression is often associated with non-response or relapse following conventional antidepressant treatment. The pathophysiology of late-life depression likely involves a complex interplay between aging and depression, and may include abnormalities in cortical inhibition and plasticity. However, the extent to which these cortical processes are modifiable by antidepressant pharmacotherapy is unknown.

Methods: Sixty-eight patients with late-life depression received 12 weeks of treatment with open-label venlafaxine, a serotonin-norepinephrine reuptake inhibitor (≤ 300 mg/d). We combined transcranial magnetic stimulation of the left motor cortex with electromyography recordings from the right hand to measure cortical inhibition using contralateral cortical silent period and paired-pulse short-interval intracortical inhibition paradigms; cortical facilitation using a paired-pulse intracortical facilitation paradigm; and short-term cortical plasticity using a paired associative stimulation paradigm. All measures were collected at baseline, 1 week into treatment ( = 23) and after approximately 12 weeks of treatment.

Results: Venlafaxine did not significantly alter cortical inhibition, facilitation or plasticity after 1 or 12 weeks of treatment. Improvements in depressive symptoms during treatment were not associated with changes in cortical physiology.

Limitations: The results presented here are specific to the motor cortex. Future work should investigate whether these findings extend to cortical areas more closely associated with depression, such as the dorsolateral prefrontal cortex.

Conclusion: These findings suggest that antidepressant treatment with venlafaxine does not exert meaningful changes in motor cortical inhibition or plasticity in late-life depression. The absence of changes in motor cortical physiology, alongside improvements in depressive symptoms, suggests that age-related changes may play a role in previously identified abnormalities in motor cortical processes in latelife depression, and that venlafaxine treatment does not target these abnormalities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955845PMC
http://dx.doi.org/10.1503/jpn.200001DOI Listing

Publication Analysis

Top Keywords

cortical inhibition
20
late-life depression
20
cortical
13
motor cortical
12
inhibition facilitation
8
facilitation plasticity
8
plasticity late-life
8
depression
8
antidepressant treatment
8
inhibition plasticity
8

Similar Publications

Partially hydrolyzed guar gum alleviates neurological deficits and gastrointestinal dysfunction in mice with traumatic brain injury.

Neurosurg Rev

January 2025

Department of Critical Care Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Zhou shan hui shui Community,199 Hailing South Road, Taizhou, Jiangsu Province, 225300, China.

Traumatic brain injury (TBI)-associated neuroinflammation and neurotoxicity can induce gastrointestinal dysfunction through the brain-gut axis. Partially hydrolyzed guar gum (PHGG) was demonstrated to exert beneficial health effects by altering gut microbiota and short-chain fatty acids (SCFAs) production. Our study aimed to explore the effects of PHGG on gastrointestinal dysfunction in TBI mouse models.

View Article and Find Full Text PDF

Background: Although invasiveness is one of the major determinants of the poor glioblastoma (GBM) outcome, the mechanisms of GBM invasion are only partially understood. Among the intrinsic and environmental processes promoting cell-to-cell interaction processes, eventually driving GBM invasion, we focused on the pro-invasive role played by Extracellular Vesicles (EVs), a heterogeneous group of cell-released membranous structures containing various bioactive cargoes, which can be transferred from donor to recipient cells.

Methods: EVs isolated from patient-derived GBM cell lines and surgical aspirates were assessed for their pro-migratory competence by spheroid migration assays, calcium imaging, and PYK-2/FAK phosphorylation.

View Article and Find Full Text PDF

Background: Acupuncture has long been used for migraine treatment as it is convenient for use and has remarkable efficacy. The acupuncture-based comprehensive treatment plan has been widely recognized for migraine prevention and treatment. However, the mechanism underlying acupuncture efficacy in migraine treatment is not yet completely understood.

View Article and Find Full Text PDF

The subthalamic nucleus is thought to play a crucial role in controlling impulsive actions. Networked among the basal ganglia and receiving input from several cortical areas, the subthalamic nucleus is well positioned to influence action selection when faced with competing and conflicting action outcomes. The purpose of this study was to test the dissociable roles of the dorsal and ventral aspects of the subthalamic nucleus during action conflict in patients with Parkinson's disease undergoing intraoperative neurophysiological recording and to explore a potential mechanism for this inhibitory control.

View Article and Find Full Text PDF

The Kv3.2 subfamily of voltage activated potassium channels encoded by the gene is abundantly expressed in neurons that fire trains of fast action potentials that are a major source of cortical inhibition. Gain-of-function (GOF) pathogenic variants in and , encoding Kv3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!