A series of isomorphous mononuclear complexes of Ln(III) ions comprising one stable tripodal oxazolidine nitroxyl radical were obtained in acetonitrile media starting from nitrates. The compounds, [LnRad(NO)] (Ln = Gd, Tb, Dy, Tm, Y; Rad = 4,4-dimethyl-2,2-bis(pyridin-2-yl)-1,3-oxazolidine-3-oxyl), have a molecular structure. Their coordination polyhedron, LnON, can be described as a tricapped trigonal prism with symmetry not far from . The extracted value of 23 cm for the antiferromagnetic coupling of Gd-Rad established from the DC magnetic and EPR data is a record strength for the complexes of 4f elements with nitroxyl radicals. The terbium derivative displays frequency-dependent out-of-phase signals in zero field, indicating single-molecule magnetic behavior. With an applied field of 0.1 T, an effective barrier of 57 cm is found.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.0c02477 | DOI Listing |
Chem Sci
December 2024
Nikolayev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences 630090 Novosibirsk Russia
Radical lanthanide complexes are appealing platforms to investigate the possibility to engineer relevant magnetic couplings between the two magnetic centers by exploiting the strongly donating magnetic orbitals of the radical. In this paper, we report a spectroscopic and magnetic study on [LnRad(NO)], where Ln = Eu or Lu and Rad is the tridentate tripodal nitroxyl radical 4,4-dimethyl-2,2-bis(pyridin-2-yl)-1,3-oxazolidine-3-oxyl. A thorough magnetic investigation by Electron Paramagnetic Resonance (EPR) spectroscopy and magnetometry, fully supported by calculations, allowed us to unravel an unprecedentedly large antiferromagnetic coupling between the Eu and the radical ( = +19.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Shenzhen University General Hospital, Shenzhen, China.
Magnetic resonance imaging (MRI) remains a cornerstone of diagnostic imaging, offering unparalleled insights into anatomical structures and pathological conditions. Gadolinium-based contrast agents have long been the standard in MRI enhancement, yet concerns over nephrogenic systemic fibrosis have spurred interest in metal-free alternatives. Nitroxide radical-based MRI contrast agents (NO-CAs) have emerged as promising candidates, leveraging their biocompatibility and imaging capabilities.
View Article and Find Full Text PDFAnal Sci
November 2024
Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba, Sendai, Miyagi, 981-8558, Japan.
Nitroxyl radicals, represented by 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO), are highly stable organic free radicals with unique properties and are used as functional molecules in various fields. However, TEMPO had low reactivity and sometimes did not provide enough response. Therefore, highly active nitroxyl radical compounds have been developed in which bicyclo and tricyclo structures stabilize the radicals.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, E-08193 Bellaterra, Spain.
Dual or multimodal imaging probes have become potent tools for enhancing detection sensitivity and accuracy in disease diagnosis. In this context, we present a bimodal imaging dendrimer-based structure that integrates magnetic and fluorescent imaging probes for potential applications in magnetic resonance imaging and fluorescence imaging. It stands out as one of the rare examples where bimodal imaging probes use organic radicals as the magnetic source, despite their tendency to entirely quench fluorophore fluorescence.
View Article and Find Full Text PDFSci Rep
October 2024
Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-aoba, Aoba-ku, Sendai, 980-8578, Japan.
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV2) infection has forced social changes worldwide. Development of potent antiviral agents is necessary to prevent future pandemics. Titanium oxide, a photocatalyst, is a long-acting antiviral agent; however, its effects are weakened in the dark.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!