Environmentally Friendly Methylcellulose-Based Binders for Active and Passive Dust Control.

ACS Appl Mater Interfaces

Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721, United States.

Published: November 2020

Particulate matter (PM) is an essential indicator to evaluate air pollution, threatening human health. Although PM control could be achieved by using a variety of polymeric materials, identifying effective and green materials remains elusive in dust control technology. Here, we have employed environmentally friendly cellulose modified by methyl side groups, such as methylcellulose (MC)-based polymers, and evaluated their PM reduction efficiency when utilized in active and passive dust control methods, such as dust suppressants and air filters, respectively. When 25 m/s wind was applied on soil treated by MC-based polymers, PM emissions were reduced 95% or 85% lower than the soil treated by only water or the other cellulose without methyl side groups. The MC-based polymer was also effectively suppressed mineral dust from a local copper mine in Arizona with approximately 50 times lower amounts than a synthetic polymer containing methyl side groups. Furthermore, when MC-based polymers have deposited on filters of commercial face masks, the average filtration efficiency improved to greater than 99% while maintaining airflow resistance. Our results present that environmentally friendly MC-based polymers can act as dust binders that effectively agglomerate air pollutants, preventing the PM emission from dust sources and the inhalation after being suspended in the air; thus, labeling them as essential materials for advanced active and passive dust control technology.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c15249DOI Listing

Publication Analysis

Top Keywords

dust control
16
mc-based polymers
16
environmentally friendly
12
active passive
12
passive dust
12
methyl side
12
side groups
12
dust
8
control technology
8
soil treated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!