Polymer composite foams are desirable materials for electromagnetic (EM) energy attenuation. However, a number of challenges limit improvement in the EM energy attenuation properties of foams. In this study, a simple microcellular injection molding method was used to fabricate highly compressible thermoplastic urethane (TPU)/carbon nanotube (CNTs) composite foams, which also had increased conductivity with an increase in CNT content. Compared to unfoamed composites, foamed composites exhibited higher conductivity and EM attenuation properties because of the presence of a microcellular structure. Moreover, the TPU/CNT foam with 4 wt % CNTs (F(4)) demonstrated strong EM dissipation and an optimal reflection loss (RL) value of -30.4 dB. Furthermore, stimulated by thermal heating and cyclic compression, EM attenuation was observed to increase because of the higher conductivity. Note that F(4) foam having a small thickness of 1.3 mm when treated at 333 K had the highest EM dissipation and the lowest RL value of -51.8 dB. Enhanced polarization and ohmic losses and multiscattering were responsible for the increased EM absorption. This behavior is attributed to the movement of CNTs within the TPU elastomer walls via thermal or compression stimulation. For designing stimulation-dependent multifunctional materials, composite foams with response to thermal heating were proved to be an alternative approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c13081 | DOI Listing |
ACS Omega
January 2025
School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
This work explores the enhancement of EMI shielding efficiency of polyurethane (PU) foam by loading multiwall carbon nanotube (MWCNTs)-decorated hollow glass microspheres (HGMs). MWCNT was coated onto the HGM surface by a simple solution casting technique. The coated HGM particles were loaded in PU foams, resulting in an even dispersion of MWCNT in the foam struts, thereby forming an interconnected conductive network in the polymer matrix.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum-Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
The development of greener substitutes for plastics is gaining massive importance in today's society. This also involves the medical field, where disposable materials are used to grant sterility. Here, a novel protocol using only a water-based solvent for the preparation of bio-based composite foams of actual β-chitin and collagen type I is presented.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan.
The porous structure, in which many pores are intentionally placed inside the material, has excellent impact energy absorption properties. Recent studies have attempted to fabricate multi-layered porous structures with different mechanical properties within a single porous structure sample, and the mechanical properties of these structures are being elucidated. However, these studies mainly attempted to vary the densities, pore structures, and alloy compositions within a single material, such as aluminum, for the entire sample.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Architectural Engineering, Huanggang Normal University, Huanggang 438000, China.
In this study, in order to solve the problems of resource utilization of electrolytic manganese residue and the destruction of natural resources by the over-exploitation of raw materials of traditional ceramics, electrolytic manganese residue (EMR), red mud (RM), and waste soil (WS) were used to prepare self-foaming expanded ceramsite (SEC), and different firing temperatures and four groups with different mixing ratios of these three raw materials were considered. Water absorption, porosity, heavy metal ion leaching, and compressive strength in the cylinder of SEC were evaluated. The chemical composition and microscopic morphology of SEC were investigated by XRD and SEM.
View Article and Find Full Text PDFFoods
January 2025
Faculty of Agriculture and Food Technology, Latvia University of Life Sciences and Technologies, Rīgas 22, LV-3001 Jelgava, Latvia.
Fruit seeds are often an underutilized side-stream of fruit processing. The most common approach to seed valorization is oil extraction due to the relative simplicity of the process. The partially or fully defatted seed meal is rarely further processed, even though seeds generally contain more protein and fiber than oil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!