A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cost-effectiveness of Population-Wide Genomic Screening for Hereditary Breast and Ovarian Cancer in the United States. | LitMetric

Importance: Genomic screening for hereditary breast and ovarian cancer (HBOC) in unselected women offers an opportunity to prevent cancer morbidity and mortality, but the potential clinical impact and cost-effectiveness of such screening have not been well studied.

Objective: To estimate the lifetime incremental incidence of HBOC and the quality-adjusted life-years (QALYs), costs, and cost-effectiveness of HBOC genomic screening in an unselected population vs family history-based testing.

Design, Setting, And Participants: In this study conducted from October 27, 2017, to May 3, 2020, a decision analytic Markov model was developed that included health states for precancer, for risk-reducing mastectomy (RRM) and risk-reducing salpingo-oophorectomy (RRSO), for earlier- and later-stage HBOC, after cancer, and for death. A complimentary cascade testing module was also developed to estimate outcomes in first-degree relatives. Age-specific RRM and RRSO uptake probabilities were estimated from the Geisinger MyCode Community Health Initiative and published sources. Parameters including RRM and RRSO effectiveness, variant-specific cancer risk, costs, and utilities were derived from published sources. Sensitivity and scenario analyses were conducted to evaluate model assumptions and uncertainty.

Main Outcomes And Measures: Lifetime cancer incidence, QALYs, life-years, and direct medical costs for genomic screening in an unselected population vs family history-based testing only were calculated. The incremental cost-effectiveness ratio (ICER) was calculated as the difference in cost between strategies divided by the difference in QALYs between strategies. Earlier-stage and later-stage cancer cases prevented and total cancer cases prevented were also calculated.

Results: The model found that population screening of 30-year-old women was associated with 75 (95% credible range [CR], 60-90) fewer overall cancer cases and 288 QALYs (95% CR, 212-373 QALYs) gained per 100 000 women screened, at an incremental cost of $25 million (95% CR, $21 millon to $30 million) vs family history-based testing; the ICER was $87 700 (78% probability of being cost-effective at a threshold of $100 000 per QALY). In contrast, population screening of 45-year-old women was associated with 24 (95% CR, 18-29) fewer cancer cases and 97 QALYs (95% CR, 66-130 QALYs) gained per 100 000 women screened, at an incremental cost of $26 million (95% CR, $22 million to $30 million); the ICER was $268 200 (0% probability of being cost-effective at a threshold of $100 000 per QALY). A scenario analysis without cascade testing increased the ICER to $92 600 for 30-year-old women and $354 500 for 45-year-old women. A scenario analysis assuming a 5% absolute decrease in mammography screening in women without a variant was associated with the potential for net harm (-90 QALYs per 100 000 women screened; 95% CR, -180 to 10 QALYs).

Conclusions And Relevance: The results of this study suggest that population HBOC screening may be cost-effective among younger women but not among older women. Cascade testing of first-degree relatives added a modest improvement in clinical and economic value. The potential for harm conferred by inappropriate reduction in mammography among noncarriers should be quantified.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596578PMC
http://dx.doi.org/10.1001/jamanetworkopen.2020.22874DOI Listing

Publication Analysis

Top Keywords

genomic screening
16
cancer cases
16
family history-based
12
cascade testing
12
100 000 women
12
women screened
12
women
11
cancer
10
screening
9
screening hereditary
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!