Complex Metal Ions: Neuropsychiatric and Imaging Features.

J Neuropsychiatry Clin Neurosci

The Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center, and the Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (Bateman, Taber, Hurley); Departments of Neurology and Psychiatry, Wake Forest School of Medicine, Winston-Salem, N.C. (Bateman); Departments of Psychiatry and Radiology, Wake Forest School of Medicine, Winston-Salem, N.C., and the Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley); and Division of Biomedical Sciences, Via College of Osteopathic Medicine, Blacksburg, Va. and Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston (Taber).

Published: August 2021

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9808918PMC
http://dx.doi.org/10.1176/appi.neuropsych.20080223DOI Listing

Publication Analysis

Top Keywords

complex metal
4
metal ions
4
ions neuropsychiatric
4
neuropsychiatric imaging
4
imaging features
4
complex
1
ions
1
neuropsychiatric
1
imaging
1
features
1

Similar Publications

Metals in Motion: Understanding Labile Metal Pools in Bacteria.

Biochemistry

January 2025

Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, United States.

Metal ions are essential for all life. In microbial cells, potassium (K) is the most abundant cation and plays a key role in maintaining osmotic balance. Magnesium (Mg) is the dominant divalent cation and is required for nucleic acid structure and as an enzyme cofactor.

View Article and Find Full Text PDF

Powder X-ray diffraction (PXRD) is a prevalent technique in materials characterization. While the analysis of PXRD often requires extensive human manual intervention, and most automated method only achieved at coarse-grained level. The more difficult and important task of fine-grained crystal structure prediction from PXRD remains unaddressed.

View Article and Find Full Text PDF

Extraction of cellulose nanocrystals from date seeds using transition metal complex-assisted hydrochloric acid hydrolysis.

Int J Biol Macromol

January 2025

Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates. Electronic address:

In this study, the role of a transition metal complex in improving hydrolysis efficiency during nanocellulose production was analysed. Cellulose nanocrystals (CNCs) were extracted from date seeds by incorporating a copper metal complex during HCl hydrolysis. In contrast to traditional HCl hydrolysis at moderate conditions, which yielded only microcrystalline cellulose (MCC), this approach resulted in the extraction of CNCs with a 10 % improved yield compared to MCC.

View Article and Find Full Text PDF

Complex wound closure scenarios necessitate the development of advanced wound dressings that can effectively address the challenges of filling irregularly shaped wounds and managing fatigue failures encountered in daily patient activities. To tackle these issues, we develop a multifunctional hydrogel from natural polysaccharides and polypeptides with injectability and self-healing properties for promoting full-time and multipurpose wound healing. Synthesized through dynamic Schiff base linkages between oxidized hyaluronic acid (OHA), ε-polylysine (ε-PL), and quaternized chitosan (QCS), the OHA/ε-PL/QCS hydrogel can gel rapidly within 50 s.

View Article and Find Full Text PDF

Enhancing the decomposition rate of ammonium perchlorate (AP), the most common oxidizer in solid propellants, is important for improving propellant performance. Metal organic frameworks (MOFs) have been developed as key materials for catalyzing AP decomposition, as they can achieve good dispersion of active sites through in-situ decomposition. Despite having considerable potential, the structural transformation process and catalytic performance of MOFs in AP decomposition are still unclear, which seriously hinders their application in the field of AP decomposition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!