Air pollution constitutes the largest cause of environmental risks today. At present, no scientific publication linking environmental black soot and derangement in the hypothalamus and testis of rats exists. This study investigated the effect of black soot exposure on hypothalamic and testicular functions of male rats exposed to black soot for 4, 8 and 12 weeks respectively. The hypothalamus and testis were processed for biochemical analysis. Results show that black soot exposure for 4, 8 and 12 weeks significantly (p < .05) increased oxidative stress markers both in the testis and in the hypothalamus of rats. Also, black soot exposure significantly (p < .05) decreased the alkaline phosphatase, acid phosphatase as well as lactate dehydrogenase activities in the testis. Furthermore, the result demonstrated an upregulation of the protein expression of caspase-3, an indication of increased apoptosis which led to the disruption of the histological architecture of the hypothalamus and testis. Taken together, black soot exposure induced hypothalamic and testicular oxidative stress and apoptosis in male rats.

Download full-text PDF

Source
http://dx.doi.org/10.1111/and.13866DOI Listing

Publication Analysis

Top Keywords

black soot
20
soot exposure
12
hypothalamic testicular
8
male rats
8
hypothalamus testis
8
black
5
exposure induced
4
induced hypothalamic
4
testicular oxidative
4
oxidative stress
4

Similar Publications

The use of 3D-printed electrodes is reported fabricated from in-house conductive filament composed of a mixture of recycled poly (lactic acid) (rPLA), graphite (Gpt), and carbon black (CB) for fast detection of the abused drug ketamine. Firstly, the performance of these electrodes was evaluated in comparison to 3D-printed electrodes produced employing a commercially available conductive filament. After a simple pretreatment step (mechanical polishing), the new 3D-printed electrodes presented better performance than the electrodes produced from commercial filament in relation to peak-to-peak separation of the redox probe [Fe(CN)]/ (130 mV and 759 mV, respectively), charge transfer resistance (R = 1.

View Article and Find Full Text PDF

Advancements in microalgal biomass conversion for rubber composite applications.

Sci Rep

January 2025

Hydrobiology Lab, Water Pollution Research Department, National Research Centre, Dokki, Giza, 12622, Egypt.

Carbon black (CB) as rubber reinforcement has raised environmental concerns regarding this traditional petroleum-based filler, which is less susceptible to biodegradability. Although it has great reinforcing properties, the production technique is no longer sustainable, and its cost increases regularly. For these reasons, it is wise to look for sustainable replacement materials.

View Article and Find Full Text PDF

Babassu (Atallea sp.), a native palm tree from South America's Amazon produces bio-oil and biochar with significant potential for industrial applications. Babassu oil as a bio-based plasticizer is reported here for the first time to replace petrochemical alternatives in the production of conductive filaments for additive manufacturing purposes.

View Article and Find Full Text PDF

Differential effects of fine particulate matter constituents on acute coronary syndrome onset.

Nat Commun

December 2024

School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China.

Fine particulate matter has been linked with acute coronary syndrome. Nevertheless, the key constituents remain unclear. Here, we conduct a nationwide case-crossover study in China during 2015-2021 to quantify the associations between fine particulate matter constituents (organic matter, black carbon, nitrate, sulfate, and ammonium) and acute coronary syndrome, and to identify the critical contributors.

View Article and Find Full Text PDF

Absence of a Causal Link between Elemental Carbon Exposure and Short-Term Respiratory Toxicity in Human-Derived Organoids and Cellular Models.

Environ Sci Technol

December 2024

Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.

Black carbon or elemental carbon (EC) in the atmosphere plays an ambiguous role in acute respiratory toxic effects. Here, we evaluate the contribution of EC to the short-term toxicity (including cytotoxicity and oxidative stress potency) of fine particulate matter (PM) on the human respiratory tract using in vitro airway organoids and cell lines. The toxic potency of EC per unit mass, including char and soot, is more than 2 orders of magnitude lower than that of polycyclic aromatic hydrocarbons (PAHs), which are coemitted from incomplete combustion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!