Pore-forming toxins are proteins expressed by bacteria to primarily cause infections in the host cell. Cholesterol-dependent cytolysins (CDCs) are a class of proteins whose pore-forming ability requires the presence of cholesterol in the membrane. Upon binding to the target cell, cholesterol-recognizing residues in the membrane binding D4 subdomain assist in stabilizing both the pre-pore and pore states which occur during protein oligomerization on the cell membrane. Super resolution-stimulated emission depletion (STED) microscopy experiments (Sarangi et al. in Langmuir, 32:9649-9657, 2016) on supported lipid bilayers have shown that listeriolysin (LLO), a CDC expressed by Listeria monocytogenes, a food-borne pathogen, induces both spatial and dynamic heterogeneity in bilayer membranes. Here, we use all-atom molecular dynamics simulations to explore molecular details of the induced membrane reorganization by considering two distinct states of the oligomerized LLO protein in a 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC): cholesterol membrane. In the membrane bound (MB) state, four D4 subunits are placed at the bilayer interface in a pre-pore configuration and the membrane-inserted (MI) state consists of a tetrameric arc-like pore configuration. By analyzing lipid-order parameters, mobilities, and diffusion coefficients, we examine the induced spatial heterogeneity that occurs in both the MB and MI states. This heterogeneity is primarily driven by the local density enhancement of cholesterol in the vicinity of the MB, D4 subunits leading to distinct differences in lipid and cholesterol mobility across the two leaflets as well as enhanced lipid mobilities in regions where cholesterol is depleted. The leaflet-induced heterogeneity is greater for the MB state when compared with the MI state and the dynamic variations are more pronounced in the extracellular leaflet when compared with the cytosolic leaflet. Our study provides molecular-level insights into the inhomogeneity and perturbation induced in bilayer membranes upon LLO binding and pore formation and is expected to represent trends across PFTs in the broad CDC subclass of proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00232-020-00148-9 | DOI Listing |
Adv Biol (Weinh)
January 2025
Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion.
View Article and Find Full Text PDFJ Membr Biol
January 2025
School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 109, India.
Membrane fusion is the first step in the infection process of the enveloped viruses. Enveloped viruses fuse either at the cell surface or enter the cell through endocytosis and transfer their internal genetic materials by fusing with the endosomal membrane at acidic pH. In this work, we have evaluated the effect of the Dengue virus fusion peptide (DENV FP) on the polyethylene glycol (PEG)-mediated lipid mixing of vesicles (hemifusion formation) at pH 5 and pH 7.
View Article and Find Full Text PDFNat Commun
January 2025
Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
Toxic protein aggregates are associated with various neurodegenerative diseases, including Huntington's disease (HD). Since no current treatment delays the progression of HD, we develop a mechanistic approach to prevent mutant huntingtin (mHttex1) aggregation. Here, we engineer the ATP-independent cytosolic chaperone PEX19, which targets peroxisomal membrane proteins to peroxisomes, to remove mHttex1 aggregates.
View Article and Find Full Text PDFRedox Biol
January 2025
Department of Pediatrics, Peking University First Hospital, Beijing, 100034, PR China. Electronic address:
Background: The binding of endothelin-1 (ET-1) to endothelin type A receptor (ETAR) performs a critical action in pulmonary arterial smooth muscle cell (PASMC) proliferation leading to pulmonary vascular structural remodeling. More evidence showed that cystathionine γ-lyase (CSE)-catalyzed endogenous hydrogen sulfide (HS) was involved in the pathogenesis of cardiovascular diseases. In this study, we aimed to explore the effect of endogenous HS/CSE pathway on the ET-1/ETAR binding and its underlying mechanisms in the cellular and animal models of PASMC proliferation.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
Fatty acid and retinol binding proteins (FARs) are lipid-binding protein that may be associated with modulating nematode pathogenicity to their hosts. However, the functional mechanism of FARs remains elusive. We attempt to study the function of a certain FAR that may be important in the development of Nippostrongylus brasiliensis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!