Allowing mutations in maximal matches boosts genome compression performance.

Bioinformatics

Advanced Analytics Institute, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia.

Published: September 2020

Motivation: A maximal match between two genomes is a contiguous non-extendable sub-sequence common in the two genomes. DNA bases mutate very often from the genome of one individual to another. When a mutation occurs in a maximal match, it breaks the maximal match into shorter match segments. The coding cost using these broken segments for reference-based genome compression is much higher than that of using the maximal match which is allowed to contain mutations.

Results: We present memRGC, a novel reference-based genome compression algorithm that leverages mutation-containing matches (MCMs) for genome encoding. MemRGC detects maximal matches between two genomes using a coprime double-window k-mer sampling search scheme, the method then extends these matches to cover mismatches (mutations) and their neighbouring maximal matches to form long and MCMs. Experiments reveal that memRGC boosts the compression performance by an average of 27% in reference-based genome compression. MemRGC is also better than the best state-of-the-art methods on all of the benchmark datasets, sometimes better by 50%. Moreover, memRGC uses much less memory and de-compression resources, while providing comparable compression speed. These advantages are of significant benefits to genome data storage and transmission.

Availability And Implementation: https://github.com/yuansliu/memRGC.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btaa572DOI Listing

Publication Analysis

Top Keywords

genome compression
16
maximal match
16
maximal matches
12
reference-based genome
12
compression performance
8
maximal
7
genome
7
compression
6
matches
5
match
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!