Afferent somatosensory information plays a crucial role in modulating efferent motor output. A better understanding of this sensorimotor interplay may inform the design of neurorehabilitation interfaces. Current neurotechnological approaches that address motor restoration after trauma or stroke combine motor imagery (MI) and contingent somatosensory feedback, e.g., via peripheral stimulation, to induce corticospinal reorganization. These interventions may, however, change the motor output already at the spinal level dependent on alterations of the afferent input. Neuromuscular electrical stimulation (NMES) was combined with measurements of wrist deflection using a kinematic glove during either MI or rest. We investigated 360 NMES bursts to the right forearm of 12 healthy subjects at two frequencies (30 and 100 Hz) in random order. For each frequency, stimulation was assessed at nine intensities. Measuring the induced wrist deflection across different intensities allowed us to estimate the input-output curve (IOC) of the spinal motor output. MI decreased the slope of the IOC independent of the stimulation frequency. NMES with 100 Hz vs. 30 Hz decreased the threshold of the IOC. Human-machine interfaces for neurorehabilitation that combine MI and NMES need to consider bidirectional communication and may utilize the gain modulation of spinal circuitries by applying low-intensity, high-frequency stimulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7561675 | PMC |
http://dx.doi.org/10.3389/fbioe.2020.523866 | DOI Listing |
Cytoplasmic dynein is an essential microtubule motor protein that powers organelle transport and mitotic spindle assembly. Its activity depends on dynein-dynactin-cargo adaptor complexes, such as dynein-dynactin-BicD2 (DDB), which typically function with two dynein motors. We show that mechanical tension recruits a third dynein motor via an auxiliary BicD adaptor binding the light intermediate chain of the third dynein, stabilizing multi-dynein assemblies and enhancing force generation.
View Article and Find Full Text PDFHorm Behav
January 2025
Department of Psychology, University of Houston, Houston, TX 77204-5022, United States; Houston Methodist Research Institute, Houston, TX 77030, United States.
The benefits of estrogen treatment on cognition in middle-aged and older women are dependent on many factors, including the timing of treatment. Moreover, the potential interactive effects with other lifestyle factors, such as exercise, are poorly understood. In this study, we tested for lasting benefits of independent and combined treatment with estrogen and voluntary exercise initiated in midlife, using a rat model of menopause.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Shandong Key Laboratory of Biophysics, Institute of Biophysics, Institute of Rural Revitalization, School of Pharmacy, Dezhou University, 253023, Dezhou, China. Electronic address:
This study presents a dual-mode and regenerated DNA motor powered by exonuclease III (Exo III) for the simultaneous detection of viral gene fragments. The detection methodology is categorized into two distinct operational modes. The first mode emphasizes the simultaneous detection of two viral gene fragments from a specific virus.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
PhysioLab, University of Florence, 50019 Sesto Fiorentino, Italy.
In maximally Ca-activated demembranated fibres from the mammalian skeletal muscle, the depression of the force by lowering the temperature below the physiological level (~35 °C) is explained by the reduction of force in the myosin motor. Instead, cooling is reported to not affect the force per motor in Ca-activated cardiac trabeculae from the rat ventricle. Here, the mechanism of the cardiac performance depression by cooling is reinvestigated with fast sarcomere-level mechanics.
View Article and Find Full Text PDFBiomedicines
December 2024
Institute of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
Dopamine receptors (DRs) are G-protein-coupled receptors (GPCRs) found in the central nervous system (CNS). DRs are essential for mediating various downstream signaling cascades and play a critical role in regulating the dopaminergic nigrostriatal pathway, which is involved in motor control. Recently, mutations in DRD2 (WT), p.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!