Virtual Reality Meets Non-invasive Brain Stimulation: Integrating Two Methods for Cognitive Rehabilitation of Mild Cognitive Impairment.

Front Neurol

Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy.

Published: September 2020

Mild cognitive impairment (MCI) refers to a subtle, general cognitive decline with a detrimental impact on elderlies' independent living and quality of life. Without a timely diagnosis, this condition can evolve into dementia over time, hence the crucial need for early detection, prevention, and rehabilitation. For this purpose, current neuropsychological interventions have been integrated with (i) virtual reality, which immerses the user in a controlled, ecological, and safe environment (so far, both virtual reality-based cognitive and motor rehabilitation have revealed promising positive outcomes); and (ii) non-invasive brain stimulation, i.e., transcranial magnetic or electric brain stimulation, which has emerged as a promising cognitive treatment for MCI and Alzheimer's dementia. To date, these two methods have been employed separately; only a few studies (limited to motor rehabilitation) have suggested their integration. The present paper suggests to extend this integration to cognitive rehabilitation as well as to provide a multimodal stimulation that could enhance cognitive training, resulting in a more efficient rehabilitation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7561425PMC
http://dx.doi.org/10.3389/fneur.2020.566731DOI Listing

Publication Analysis

Top Keywords

brain stimulation
12
virtual reality
8
non-invasive brain
8
cognitive
8
cognitive rehabilitation
8
mild cognitive
8
cognitive impairment
8
motor rehabilitation
8
rehabilitation
6
reality meets
4

Similar Publications

Morphine dependence or addiction is a serious global public health and social problem, and traditional treatments are very limited. Deep brain stimulation (DBS) has emerged as a new potential treatment for drug addiction. Repeated use of morphine leads to neuroadaptive and molecular changes in the addiction-related brain regions.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms that profoundly impact patients' quality of life. While pharmacological therapies such as levodopa remain the mainstay of treatment, their long-term use is often limited by motor complications. Device-based interventions, including deep brain stimulation (DBS) and continuous dopaminergic infusions, have emerged as alternatives, promising sustained symptomatic control and reduced medication-related side effects.

View Article and Find Full Text PDF

Essential tremor (ET) is one of the most prevalent nerve-related movement disorders, most commonly affecting the hands during voluntary movements or while maintaining posture. Unlike tremors in neurodegenerative conditions, ET is not observed at rest. Continued research is essential to optimize treatment strategies and address the unmet need for sustainable, patient-centered therapies that minimize side effects and enhance long-term quality of life (QoL) for individuals with ET.

View Article and Find Full Text PDF

Objective: In order to determine whether intermittent theta-burst stimulation (iTBS) is a viable adjunct treatment for schizophrenia, a meta-analysis of double-blind, randomized clinical trials (RCTs) was performed.

Methods: Four independent researchers extracted and synthesized data from RCTs on adjunctive iTBS for patients suffering from schizophrenia. RevMan 5.

View Article and Find Full Text PDF

Next generation bioelectronic medicine: making the case for non-invasive closed-loop autonomic neuromodulation.

Bioelectron Med

January 2025

SecondWave Systems Incorporated, Head Quarters, Minneapolis-Saint Paul, MN, 55104, USA.

The field of bioelectronic medicine has advanced rapidly from rudimentary electrical therapies to cutting-edge closed-loop systems that integrate real-time physiological monitoring with adaptive neuromodulation. Early innovations, such as cardiac pacemakers and deep brain stimulation, paved the way for these sophisticated technologies. This review traces the historical and technological progression of bioelectronic medicine, culminating in the emerging potential of closed-loop devices for multiple disorders of the brain and body.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!