How organisms display many different biochemical, physiological processes through genes expression and regulatory mechanisms affecting muscle growth is a central issue in growth and development. In , the growth-related genes and underlying relevant mechanisms are poorly understood, especially for difference of body sizes and compensatory growth performance. Muscle from 3-month old individuals of different sizes was used for transcriptome analysis. Results showed that 8,942 different expression genes (DEGs) were identified after calculating the RPKM. The DEGs involved in GH-IGF pathways, protein synthesis, ribosome synthesis and energy metabolisms, which were expressed significantly higher in small individuals (S) than large fish (L). In repletion feeding and compensatory growth experiments, eight more significant DEGs were used for further research (GHR2, IGFR1, 4ebp, Mhc, Mlc, Myf6, MyoD, troponin). When food was plentiful, eight genes participated in and promoted growth and muscle synthesis, respectively. Starvation can be shown to inhibit the expression of Mhc, Mlc and troponin, and high expression of GHR2, IGFR1, and 4ebp inhibited growth. Fasting promoted the metabolic actions of GHR2, IGFR1, and 4ebp rather than the growth-promoting actions. MyoD can sense and regulate the hunger, which also worked with Mhc and Mlc to accelerate the compensatory growth of . This study is helpful to understand the regulation mechanisms of muscle growth-related genes. The elected genes will contribute to the selective breeding in future as candidate genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7552573 | PMC |
http://dx.doi.org/10.3389/fphys.2020.553563 | DOI Listing |
Narra J
December 2024
Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
Chronic limb-threatening ischemia (CLTI) is the most severe manifestation of peripheral arterial disease (PAD) and imposes a significantly high burden due to its high risk of mortality and amputation. Revascularization is the first-line treatment for CLTI; however, the amputation rate remains high, and approximately one-third of patients are not eligible for this treatment. Therefore, there is an urgent need for more effective therapeutic strategies.
View Article and Find Full Text PDFBioact Mater
April 2025
State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
Reactive oxygen species (ROS) at elevated levels trigger oxidative DNA damage, which is a significant factor in psoriasis exacerbation. However, normal ROS levels are essential for cell signaling, cell growth regulation, differentiation, and immune responses. To address this, we developed ROS control strategies inspired by compensatory effects.
View Article and Find Full Text PDFNat Metab
January 2025
Department of Bioengineering, University of California, University of California, San Diego, La Jolla, CA, USA.
The Warburg effect, which describes the fermentation of glucose to lactate even in the presence of oxygen, is ubiquitous in proliferative mammalian cells, including cancer cells, but poses challenges for biopharmaceutical production as lactate accumulation inhibits cell growth and protein production. Previous efforts to eliminate lactate production in cells for bioprocessing have failed as lactate dehydrogenase is essential for cell growth. Here, we effectively eliminate lactate production in Chinese hamster ovary and in the human embryonic kidney cell line HEK293 by simultaneous knockout of lactate dehydrogenases and pyruvate dehydrogenase kinases, thereby removing a negative feedback loop that typically inhibits pyruvate conversion to acetyl-CoA.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina.
Biofilms are critical in the persistence of Pseudomonas aeruginosa infections, particularly in cystic fibrosis patients. This study explores the adaptive mechanisms behind the phenotypic switching between Small Colony Variants (SCVs) and revertant states in P. aeruginosa biofilms, emphasizing hypermutability due to Mismatch Repair System (MRS) deficiencies.
View Article and Find Full Text PDFNeurons require high amounts energy, and mitochondria help to fulfill this requirement. Dysfunc-tional mitochondria trigger problems in various neuronal tasks. Using the neuromuscular junction (NMJ) as a model synapse, we previously reported that Mitochondrial Complex I (MCI) subunits were required for maintaining NMJ function and growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!