Purpose: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. LukS-PV is the S component of Panton-Valentine leucocidin (PVL), a toxin secreted by . We aimed to investigate the role of LukS-PV in HCC cell migration and the specific molecular mechanism involved.
Methods: We used scratch assays to detect the mobility of liver cancer cells treated with LukS-PV. Quantitative real-time PCR and Western blot analysis were performed to detect the expression levels of related genes. RNA sequencing and quantitative proteomics sequencing were used to assess the transcriptional and proteomic alterations of target genes. RNA sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) pathway analyses revealed the downstream signaling pathway targets of LukS-PV.
Results: Our results demonstrated that LukS-PV could inhibit HCC cell migration in a concentration-dependent manner. LukS-PV could also downregulate the expression of TNNC1, which was highly expressed in HCC cells. Additionally, the study showed that LukS-PV inhibited HCC cell migration by downregulating TNNC1. Further studies showed that LukS-PV inhibited the phosphorylation of PI3K/AKT pathway by targeting TNNC1, thereby inhibiting HCC cell migration.
Conclusion: Our study demonstrated that LukS-PV has an inhibitory role in the migration of liver cancer cells through the TNNC1/PI3K/AKT axis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578518 | PMC |
http://dx.doi.org/10.2147/OTT.S278540 | DOI Listing |
Clin Exp Med
January 2025
Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.
View Article and Find Full Text PDFIntroduction: 58 million people worldwide are chronically infected with hepatitis C virus (HCV) and are at risk of developing cirrhosis and hepatocellular carcinoma (HCC). Direct-acting antivirals are highly effective; however, they are burdened by high costs and the unchanged risk of HCC and reinfection, making prophylactic countermeasures an urgent medical need. HCV high genetic diversity is one of the main obstacles to vaccine development.
View Article and Find Full Text PDFCancer Cell Int
January 2025
Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 20025, China.
Background: Methyltransferase-like (METTL) family protein plays a crucial role in the progression of malignancies. However, the function of METTL17 across pan-cancers, especially in hepatocellular carcinoma (HCC) is still poorly understood.
Methods: All original data were downloaded from TCGA, GTEx, HPA, UCSC databases and various data portals.
Cell Div
January 2025
Second Department of General Surgery, the First Hospital of Qiqihar, No. 700, Pukui avenue, Long sha District, Qiqihar, Heilongjiang, 161000, P. R. China.
Background: Dysregulation of SF3A3 has been related to the development of many cancers. Here, we investigated the functional role of SF3A3 in hepatocellular carcinoma (HCC).
Methods: SF3A3 expression in HCC tissues and cell lines was examined using RT-qPCR.
Background: As a member of the tumor necrosis factor (TNF) superfamily, tumor necrosis factor superfamily member 4 (TNFSF4) is expressed on antigen-presenting cells and activated T cells by binding to its receptor TNFRSF4. However, tumorigenicity of TNFSF4 has not been studied in pan-cancer. Therefore, comprehensive bioinformatics analysis of pan-cancer was performed to determine the mechanisms through which TNFSF4 regulates tumorigenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!