The long-term accumulation of biodiversity has been punctuated by remarkable evolutionary transitions that allowed organisms to exploit new ecological opportunities. Mesozoic flying reptiles (the pterosaurs), which dominated the skies for more than 150 million years, were the product of one such transition. The ancestors of pterosaurs were small and probably bipedal early archosaurs, which were certainly well-adapted to terrestrial locomotion. Pterosaurs diverged from dinosaur ancestors in the Early Triassic epoch (around 245 million years ago); however, the first fossils of pterosaurs are dated to 25 million years later, in the Late Triassic epoch. Therefore, in the absence of proto-pterosaur fossils, it is difficult to study how flight first evolved in this group. Here we describe the evolutionary dynamics of the adaptation of pterosaurs to a new method of locomotion. The earliest known pterosaurs took flight and subsequently appear to have become capable and efficient flyers. However, it seems clear that transitioning between forms of locomotion-from terrestrial to volant-challenged early pterosaurs by imposing a high energetic burden, thus requiring flight to provide some offsetting fitness benefits. Using phylogenetic statistical methods and biophysical models combined with information from the fossil record, we detect an evolutionary signal of natural selection that acted to increase flight efficiency over millions of years. Our results show that there was still considerable room for improvement in terms of efficiency after the appearance of flight. However, in the Azhdarchoidea, a clade that exhibits gigantism, we test the hypothesis that there was a decreased reliance on flight and find evidence for reduced selection on flight efficiency in this clade. Our approach offers a blueprint to objectively study functional and energetic changes through geological time at a more nuanced level than has previously been possible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-020-2858-8 | DOI Listing |
J Chromatogr A
January 2025
Division of Pharmacognosy, School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 38 Xueyuan Road, Beijing 100191, China; Medical College, Tibet University, Lhasa 850002, China. Electronic address:
Identification of constitutive herbs in an herbal product is critical for ensuring its quality and efficacy. However, current identification methods often lack universality, entail long durations, and involve complex procedures. Therefore, there is an urgent need to develop innovative methods for identifying constitutive herbs.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a well-known technique for polymer analysis, particularly for determining the molecular weight and structural details of dendrimers. In this study, we evaluated the performance of various matrices, such as 2',4',6'-trihydroxyacetophenone (THAP), α-cyano-4-hydroxycinnamic acid (HCCA), and sinapinic acid (SA), and their combinations, on the sensitivity and resolution of poly(amidoamine) (PAMAM) dendrimers of different generations (G3.0, G4.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Mechanical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA.
This study presents the design, modeling, and validation of a mixing screw for energy-efficient single-screw extrusion. The screw features a short length-to-diameter (L/D) ratio of 8:1 and incorporates double flights with variable pitch and counter-rotating mixing slots. These features promote enhanced plastication by breaking up the solid bed and improving thermal homogeneity through backflow mechanisms relieving a 3.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Beijing Institute of Radio Measurement, Beijing 100854, China.
The efficient acquisition and processing of large-scale terrain data has always been a focal point in the field of photogrammetry. Particularly in complex mountainous regions characterized by clouds, terrain, and airspace environments, the window for data collection is extremely limited. This paper investigates the use of airborne millimeter-wave InSAR systems for efficient terrain mapping under such challenging conditions.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Business, Beijing Wuzi University, Beijing 101149, China.
Unmanned aerial vehicle (UAV)-based wireless sensor networks (WSNs) hold great promise for supporting ground-based sensors due to the mobility of UAVs and the ease of establishing line-of-sight links. UAV-based WSNs equipped with mobile edge computing (MEC) servers effectively mitigate challenges associated with long-distance transmission and the limited coverage of edge base stations (BSs), emerging as a powerful paradigm for both communication and computing services. Furthermore, incorporating simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) as passive relays significantly enhances the propagation environment and service quality of UAV-based WSNs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!