The tight regulation of cytoskeleton dynamics is required for a number of cellular processes, including migration, division and differentiation. YAP-TEAD respond to cell-cell interaction and to substrate mechanics and, among their downstream effects, prompt focal adhesion (FA) gene transcription, thus contributing to FA-cytoskeleton stability. This activity is key to the definition of adult cell mechanical properties and function. Its regulation and role in pluripotent stem cells are poorly understood. Human PSCs display a sustained basal YAP-driven transcriptional activity despite they grow in very dense colonies, indicating these cells are insensitive to contact inhibition. PSC inability to perceive cell-cell interactions can be restored by tampering with Tankyrase enzyme, thus favouring AMOT inhibition of YAP function. YAP-TEAD complex is promptly inactivated when germ layers are specified, and this event is needed to adjust PSC mechanical properties in response to physiological substrate stiffness. By providing evidence that YAP-TEAD1 complex targets key genes encoding for proteins involved in cytoskeleton dynamics, we suggest that substrate mechanics can direct PSC specification by influencing cytoskeleton arrangement and intracellular tension. We propose an aberrant activation of YAP-TEAD1 axis alters PSC potency by inhibiting cytoskeleton dynamics, thus paralyzing the changes in shape requested for the acquisition of the given phenotype.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8027678 | PMC |
http://dx.doi.org/10.1038/s41418-020-00643-5 | DOI Listing |
J Neurosci
December 2024
Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
Excitatory synapses and the actin-rich dendritic spines on which they reside are indispensable for information processing and storage in the brain. In the adult hippocampus, excitatory synapses must balance plasticity and stability to support learning and memory. However, the mechanisms governing this balance remain poorly understood.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA. Electronic address:
Microtubule (MT) function plasticity originates from its composition of α- and β-tubulin isotypes and the post-translational modifications of both subunits. Aspects such as MT assembly dynamics, structure, and anticancer drug binding can be modulated by αβ-tubulin heterogeneity. However, the exact molecular mechanism regulating these aspects is only partially understood.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Department of Biochemistry and Molecular Biology & The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
We present protocols for using an optogenetic tool called LILAC for actin imaging. LILAC is a light-controlled version of Lifeact that uses the Avena sativa LOV2 (AsLOV2) domain. By significantly reducing Lifeact's affinity for the cytoskeleton in the dark, LILAC reduces concentration-dependent negative side effects while enabling new image processing methods.
View Article and Find Full Text PDFPLoS Pathog
December 2024
Department of Botany and Plant Pathology, and Center for Plant Biology, Purdue University, West Lafayette, Indiana, United States of America.
Cellular responses to biotic stress frequently involve signaling pathways that are conserved across eukaryotes. These pathways include the cytoskeleton, a proteinaceous network that senses external cues at the cell surface and signals to interior cellular components. During biotic stress, dynamic cytoskeletal rearrangements serve as a platform from which early immune-associated processes are organized and activated.
View Article and Find Full Text PDFCell Death Differ
December 2024
Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA.
Disulfidptosis is a recently identified form of cell death characterized by the aberrant accumulation of cellular disulfides. This process primarily occurs in glucose-starved cells expressing higher levels of SLC7A11 and has been proposed as a therapeutic strategy for cancers with hyperactive SCL7A11. However, the potential for inducing disulfidptosis through other mechanisms in cancers remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!