Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Limiting the rise in global mean temperatures relies on reducing carbon dioxide (CO) emissions and on the removal of CO by land carbon sinks. China is currently the single largest emitter of CO, responsible for approximately 27 per cent (2.67 petagrams of carbon per year) of global fossil fuel emissions in 2017. Understanding of Chinese land biosphere fluxes has been hampered by sparse data coverage, which has resulted in a wide range of a posteriori estimates of flux. Here we present recently available data on the atmospheric mole fraction of CO, measured from six sites across China during 2009 to 2016. Using these data, we estimate a mean Chinese land biosphere sink of -1.11 ± 0.38 petagrams of carbon per year during 2010 to 2016, equivalent to about 45 per cent of our estimate of annual Chinese anthropogenic emissions over that period. Our estimate reflects a previously underestimated land carbon sink over southwest China (Yunnan, Guizhou and Guangxi provinces) throughout the year, and over northeast China (especially Heilongjiang and Jilin provinces) during summer months. These provinces have established a pattern of rapid afforestation of progressively larger regions, with provincial forest areas increasing by between 0.04 million and 0.44 million hectares per year over the past 10 to 15 years. These large-scale changes reflect the expansion of fast-growing plantation forests that contribute to timber exports and the domestic production of paper. Space-borne observations of vegetation greenness show a large increase with time over this study period, supporting the timing and increase in the land carbon sink over these afforestation regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-020-2849-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!