Two-dimensional metamaterials, consisting of an array of ultrathin building blocks, offer a versatile and compact platform for tailoring the properties of the electromagnetic waves. Such flat metasurfaces provide a unique solution to circumvent the limitations imposed by their three-dimensional counterparts. Albeit several successful demonstrations of metasurfaces have been presented in the visible, infrared, and terahertz regimes, etc., there is hardly any demonstration for ultraviolet wavelengths due to the unavailability of the appropriate lossless materials. Here, we present diamond as an ultra-low loss material for the near and deep ultraviolet (UV) light and engineer diamond step-index nanowaveguides (DSINs) to achieve full control over the phase and amplitude of the incident wave. A comprehensive analytical solution of step-index nanowaveguides (supported by the numerical study) is provided to describe the underlying mechanism of such controlled wavefront shaping. Due to the ultra-low loss nature of diamond in near and deep UV regimes, our DSINs and metasurfaces designed (from them) exhibit a decent efficiency of ≈ 84% over the entire spectrum of interest. To verify this high efficiency and absolute control over wavefront, we have designed polarization-insensitive meta-holograms through optimized DSINs for operational wavelength λ = 250 nm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595241 | PMC |
http://dx.doi.org/10.1038/s41598-020-75718-x | DOI Listing |
Diamonds containing the negatively charged nitrogen-vacancy centre are a promising system for room-temperature magnetometry. The combination of nano- and micro-diamond particles with optical fibres provides an option for deploying nitrogen-vacancy magnetometers in harsh and challenging environments. Here we numerically explore the coupling efficiency from nitrogen-vacancy centres within a diamond doped at the core/clad interface across a range of commercially available fibre types so as to inform the design process for a diamond in fibre magnetometers.
View Article and Find Full Text PDFSci Rep
October 2020
Research Institute for Microwave and Millimeter-Wave Studies (RIMMS), National University of Sciences and Technology (NUST), Islamabad, 46000, Pakistan.
Two-dimensional metamaterials, consisting of an array of ultrathin building blocks, offer a versatile and compact platform for tailoring the properties of the electromagnetic waves. Such flat metasurfaces provide a unique solution to circumvent the limitations imposed by their three-dimensional counterparts. Albeit several successful demonstrations of metasurfaces have been presented in the visible, infrared, and terahertz regimes, etc.
View Article and Find Full Text PDFWe report on a fiber-integrated refractive index sensor based on a Fabry-Perot micro-resonator fabricated using simple diamond blade dicing of a single-mode step-index fiber. The performance of the device has been tested for the refractive index measurements of sucrose solutions as well as in air. The device shows a sensitivity of 1160 nm/RIU (refractive index unit) at a wavelength of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!