Due to their excellent mechanical and biocompatibility properties, titanium-based implants are successfully used as biomedical devices. However, when new bone formation fails for different reasons, impaired fracture healing becomes a clinical problem and affects the patient's quality of life. We aimed to design a new bioactive surface of titanium implants with a synergetic PEG biopolymer-based composition for gradual delivery of growth factors (FGF2, VEGF, and BMP4) during bone healing. The optimal architecture of non-cytotoxic polymeric coatings deposited by dip coating under controlled parameters was assessed both in cultured cells and in a rat tibial defect model (100% viability). Notably, the titanium adsorbed polymer matrix induced an improved healing process when compared with the individual action of each biomolecules. High-performance mass spectrometry analysis demonstrated that recovery after a traumatic event is governed by specific differentially regulated proteins, acting in a coordinated response to the external stimulus. Predicted protein interactions shown by STRING analysis were well organized in hub-based networks related with response to chemical, wound healing and response to stress pathways. The proposed functional polymer coatings of the titanium implants demonstrated the significant improvement of bone healing process after injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595204PMC
http://dx.doi.org/10.1038/s41598-020-75527-2DOI Listing

Publication Analysis

Top Keywords

bioactive surface
8
rat tibial
8
tibial defect
8
defect model
8
titanium implants
8
bone healing
8
healing process
8
healing
5
proteomics regenerated
4
regenerated tissue
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!