Several literature has shown that salinomycin (Sal) is able to kill various types of cancer cells through different signaling pathways. However, its effect on melanoma has seldom been reported. We examined the anti-cancer efficacy of Sal in melanoma cell lines, and found six of eight cell lines were sensitive to Sal. Given the fact that the roles of Sal are diverse in different cancer types, we were eager to figure out the mechanism involved in the current study. We noticed the most sensitive line, SK-Mel-19, showed a typical morphological change after Sal treatment. The autophagy inhibitor, 3-MA, could effectively suppress Sal-induced cell death. It could also facilitate the increase of autophagic markers and reduce the turnover of autophagosomes, which resulted in an aberrant autophagic flux. On the other hand, Sal could stimulate endoplasmic reticulum stress and cause an accumulation of dysfunctional mitochondria. We also discovered a potential correlation between LC3B mRNA level and its sensitivity to Sal in 43 clinical melanoma samples. Overall, our results indicated that Sal could have multiple effect on melanoma cells and induce autophagic cell death in certain kinds of cells, which provided a new insight into the chemotherapy for melanoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595060 | PMC |
http://dx.doi.org/10.1038/s41598-020-75598-1 | DOI Listing |
J Med Chem
January 2025
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China.
Pyroptosis, an excellent form of immunogenic cell death that can effectively activate antitumor immune responses, is attracting considerable interest as a promising approach for cancer immunotherapy. Immunogenic pyroptosis can recruit and stimulate dendritic cells to provoke further activation and tumor infiltration of T cells by releasing danger-associated molecular patterns, thus improving the tumor response to PD-1/PD-L1 checkpoint blockade immunotherapy. Here, we report the discovery of a bifunctional photosensitizer Nile Violet that can simultaneously trigger caspase-3/GSDME-mediated immunogenic pyroptosis and PD-L1 downregulation for cancer photoimmunotherapy.
View Article and Find Full Text PDFJ Acquir Immune Defic Syndr
January 2025
Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California-San Francisco, School of Medicine, San Francisco, California 675 18th Street, San Francisco, CA 94107.
Background: People with schizophrenia spectrum disorders are at elevated risk of HIV, and people with both HIV and schizophrenia are at elevated risk of death compared to individuals with either diagnosis alone. Limited research has assessed the HIV care cascade, and in particular retention in care, among people with HIV (PWH) and schizophrenia in the U.S.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.
Purpose: To investigate the effect of Rho-associated protein kinase (ROCK) inhibitor Y27632 on bioenergetic capacity and resilience of corneal endothelial cells (CECs) under metabolic stress.
Methods: Bovine CECs (BCECs) were treated with Y27632 and subjected to bioenergetic profiling using the Seahorse XFp Analyzer. The effects on adenosine triphosphate (ATP) production through oxidative phosphorylation and glycolysis were measured.
Dokl Biochem Biophys
January 2025
National Research University Higher School of Economics, Moscow, Russia.
Ferroptosis is an iron-dependent form of programmed cell death (PCD) associated with lipid membrane peroxidation. It has gained attention in cancer research because some tumor cells that are resistant to other forms of PCD are sensitive to ferroptosis. Despite the significant amount of research on ferroptosis, the list of known inducers remains limited, creating opportunities to discover new compounds with clinical potential.
View Article and Find Full Text PDFDokl Biochem Biophys
January 2025
State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098, Moscow, Russia.
Background: The effects of ionizing radiation (IR) involve a highly orchestrated series of events in cells, including DNA damage and repair, cell death, and changes in the level of proliferation associated with the stage of the cell cycle. A large number of existing studies in literature have examined the activity of genes and their regulators in mammalian cells in response to high doses of ionizing radiation. Although there are many studies, the research in effect of low doses of ionizing radiation remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!