In this study, we demonstrated the use of low-cost portable electroencephalography (EEG) as a method for prehospital stroke diagnosis. We used a portable EEG system to record data from 25 participants, 16 had acute ischemic stroke events, and compared the results to age-matched controls that included stroke mimics. Delta/alpha ratio (DAR), (delta + theta)/(alpha + beta) ratio (DBATR) and pairwise-derived Brain Symmetry Index (pdBSI) were investigated, as well as head movement using the on-board accelerometer and gyroscope. We then used machine learning to distinguish between different subgroups. DAR and DBATR increased in ischemic stroke patients with increasing stroke severity (p = 0.0021, partial η = 0.293; p = 0.01, partial η = 0.234). Also, pdBSI decreased in low frequencies and increased in high frequencies in patients who had a stroke (p = 0.036, partial η = 0.177). Using classification trees, we were able to distinguish moderate to severe stroke patients and from minor stroke and controls, with a 63% sensitivity, 86% specificity and accuracy of 76%. There are significant differences in DAR, DBATR, and pdBSI between patients with ischemic stroke when compared to controls, and these effects scale with severity. We have shown the utility of a low-cost portable EEG system to aid in patient triage and diagnosis as an early detection tool.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595199PMC
http://dx.doi.org/10.1038/s41598-020-75379-wDOI Listing

Publication Analysis

Top Keywords

portable eeg
12
eeg system
12
ischemic stroke
12
stroke
10
stroke severity
8
low-cost portable
8
dar dbatr
8
stroke patients
8
predicting stroke
4
severity 3-min
4

Similar Publications

Diagnosing Alzheimer's disease (AD) through pathological markers is typically costly and invasive. This study aims to find a noninvasive, cost-effective method using portable electroencephalography (EEG) to detect changes in AD-related biomarkers in cerebrospinal fluid (CSF). A total of 102 patients, both with and without AD-related biomarker changes (amyloid beta and phosphorylated tau), were recorded using a 2-minute resting-state portable EEG.

View Article and Find Full Text PDF

Performance Improvement with Reduced Number of Channels in Motor Imagery BCI System.

Sensors (Basel)

December 2024

Department of Electronics and Communication Engineering, Istanbul Technical University, 34467 Istanbul, Istanbul, Turkey.

Classifying Motor Imaging (MI) Electroencephalogram (EEG) signals is of vital importance for Brain-Computer Interface (BCI) systems, but challenges remain. A key challenge is to reduce the number of channels to improve flexibility, portability, and computational efficiency, especially in multi-class scenarios where more channels are needed for accurate classification. This study demonstrates that combining Electrooculogram (EOG) channels with a reduced set of EEG channels is more effective than relying on a large number of EEG channels alone.

View Article and Find Full Text PDF

Consumer-grade EEG devices, such as the InteraXon Muse 2 headband, present a promising opportunity to enhance the accessibility and inclusivity of neuroscience research. However, their effectiveness in capturing language-related ERP components, such as the N400, remains underexplored. This study thus aimed to investigate the feasibility of using the Muse 2 to measure the N400 effect in a semantic relatedness judgment task.

View Article and Find Full Text PDF

Comparative Analysis of Single-Channel and Multi-Channel Classification of Sleep Stages Across Four Different Data Sets.

Brain Sci

November 2024

Department of Neurology, Beth Isreal Deaconess Medical Center, Harvard Medical School, Harvard University, Cambridge, MA 02215, USA.

: Manually labeling sleep stages is time-consuming and labor-intensive, making automatic sleep staging methods crucial for practical sleep monitoring. While both single- and multi-channel data are commonly used in automatic sleep staging, limited research has adequately investigated the differences in their effectiveness. In this study, four public data sets-Sleep-SC, APPLES, SHHS1, and MrOS1-are utilized, and an advanced hybrid attention neural network composed of a multi-branch convolutional neural network and the multi-head attention mechanism is employed for automatic sleep staging.

View Article and Find Full Text PDF

Study Objectives: Polysomnography (PSG) currently serves as the benchmark for evaluating sleep disorders. Its discomfort makes long-term monitoring unfeasible, leading to bias in sleep quality assessment. Hence, less invasive, cost-effective, and portable alternatives need to be explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!