Atmospheric circulation is a fundamental component of Earth's climate system, transporting energy poleward to partially offset the latitudinal imbalance in insolation. Changes in the latitudinal distribution of insolation thus force variations in atmospheric circulation, in turn altering regional hydroclimates. Here we demonstrate that regional hydroclimates controlled by the Northern Hemisphere mid-latitude storm tracks and the African and South American Monsoons changed synchronously during the last 10 kyrs. We argue that these regional hydroclimate variations are connected and reflect the adjustment of the atmospheric poleward energy transport to the evolving differential heating of the Northern and Southern Hemispheres. These results indicate that changes in latitudinal insolation gradients and associated variations in latitudinal temperature gradients exert important control on atmospheric circulation and regional hydroclimates. Since the current episode of global warming strongly affects latitudinal temperature gradients through Arctic amplification, our results can inform projections of likely inter-hemispheric precipitation changes in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595035PMC
http://dx.doi.org/10.1038/s41467-020-19021-3DOI Listing

Publication Analysis

Top Keywords

atmospheric circulation
12
regional hydroclimates
12
latitudinal insolation
8
insolation gradients
8
changes latitudinal
8
latitudinal temperature
8
temperature gradients
8
latitudinal
6
inter-hemispheric synchroneity
4
synchroneity holocene
4

Similar Publications

Unlabelled: "Single Model initial-condition Large Ensembles" (SMILEs) conducted with Earth system models have transformed our ability to quantify internal climate variability and forced climate change at local and regional scales. An important consideration in their experimental design is the choice of initialization procedure as this influences the duration of initial-condition memory, with implications for interpreting the temporal evolution of both the ensemble-mean and ensemble-spread. Here we leverage the strategic design of the 100-member Community Earth System Model version 2 (CESM2) SMILE to investigate the dependence of ensemble spread on the method of initialization (micro- vs.

View Article and Find Full Text PDF

A high-resolution record of central Mediterranean Sea Surface Temperatures (SSTs) based on the alkenone UK'37 index and planktic δ18O values for the surface-dweller G. ruber has been reconstructed across the Pliocene/Pleistocene transition at Monte San Nicola (Sicily), reference area for the GSSP (Global Boundary Stratotype Section and Point) of the Gelasian Stage. Spectral analyses indicate that the SST record is predominantly paced by a cyclicity in the ~47 kyr time domain, consistent with the obliquity driven glacial-interglacial variability that is expected to dominate in the interval of relevance.

View Article and Find Full Text PDF

Overwintering of Usutu virus in mosquitoes, The Netherlands.

Parasit Vectors

December 2024

Laboratory of Entomology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands.

Analyses of mosquito-borne virus outbreaks have revealed the presence of similar virus strains over several years. However, it remains unclear how mosquito-borne viruses can persist over winter, when conditions are generally unfavorable for virus circulation. One potential route for virus persistence is via diapausing mosquitoes.

View Article and Find Full Text PDF

The effect of CO ramping rate on the transient weakening of the Atlantic Meridional Overturning Circulation.

Proc Natl Acad Sci U S A

January 2025

Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, WA 98105.

The Atlantic Meridional Overturning Circulation (AMOC) is a key component of the global climate that is projected to weaken under future anthropogenic climate change. While many studies have investigated the AMOC's response to different levels and types of forcing in climate models, relatively little attention has been paid to the AMOC's sensitivity to the rate of forcing change, despite it also being highly uncertain in future emissions scenarios. In this study, I isolate the AMOC's response to different rates of CO increase in a state-of-the-art global climate model and find that the AMOC undergoes more severe weakening under faster rates of CO change, even when the magnitude of CO change is the same.

View Article and Find Full Text PDF

Aerosol light absorption has been widely considered as a contributing factor to the worsening of particulate pollution in large urban areas, primarily through its role in stabilizing the planetary boundary layer (PBL). Here, we report that absorption-dominated aerosol-radiation interaction can decrease near-surface fine particulate matter concentrations ([PM]) at a large-scale during wintertime haze events. A "warm bubble" effect by the significant heating rate of absorbing aerosols above the PBL top generates a secondary circulation, enhancing the upward motion (downward motion) and the convergence (divergence) in polluted (relatively clean) areas, with a net effect of lowering near-surface [PM].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!