This study identified a genotype of respiratory syncytial virus (RSV) associated with increased acute respiratory disease severity in a cohort of previously healthy term infants. The genotype (2stop+A4G) consists of two components. The A4G component is a prevalent point mutation in the 4th position of the gene end transcription termination signal of the G gene of currently circulating RSV strains. The 2stop component is two tandem stop codons at the G gene terminus, preceding the gene end transcription termination signal. To investigate the biological role of these RSV G gene mutations, recombinant RSV strains harboring either a wild-type A2 strain G gene (one stop codon preceding a wild-type gene end signal), an A4G gene end signal preceded by one stop codon, or the 2stop+A4G virulence-associated combination were generated and characterized. Infection with the recombinant A4G (rA4G) RSV mutant resulted in transcriptional readthrough and lower G and fusion (F) protein levels than for the wild type. Addition of a second stop codon preceding the A4G point mutation (2stop+A4G) restored G protein expression but retained lower F protein levels. These data suggest that RSV G and F glycoprotein expression is regulated by transcriptional and translational readthrough. Notably, while rA4G and r2stop+A4G RSV were attenuated in cells and in naive BALB/c mice compared to that for wild-type RSV, the r2stop+A4G RSV was better able to infect BALB/c mice in the presence of preexisting immunity than rA4G RSV. Together, these factors may contribute to the maintenance and virulence of the 2stop+A4G genotype in currently circulating RSV-A strains. Strain-specific differences in respiratory syncytial virus (RSV) isolates are associated with differential pathogenesis in mice. However, the role of RSV genotypes in human infection is incompletely understood. This work demonstrates that one such genotype, 2stop+A4G, present in the RSV attachment (G) gene terminus is associated with greater infant disease severity. The genotype consists of two tandem stop codons preceding an A-to-G point mutation in the 4th position of the G gene end transcription termination signal. Virologically, the 2stop+A4G RSV genotype results in reduced levels of the RSV fusion (F) glycoprotein. A recombinant 2stop+A4G RSV was better able to establish infection in the presence of existing RSV immunity than a virus harboring the common A4G mutation. These data suggest that regulation of G and F expression has implications for virulence and, potentially, immune evasion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7944440PMC
http://dx.doi.org/10.1128/JVI.01201-20DOI Listing

Publication Analysis

Top Keywords

rsv
17
respiratory syncytial
12
syncytial virus
12
point mutation
12
gene transcription
12
transcription termination
12
termination signal
12
2stop+a4g rsv
12
gene
11
attachment gene
8

Similar Publications

Correlation Between Voltage and Impedance Mapping in Patients with Atrial Fibrillation.

J Clin Med

December 2024

Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy.

Pulmonary vein isolation (PVI) represents the cornerstone of paroxysmal (PAF) and persistent atrial fibrillation (PsAF) ablation. Impedance values provide insights on tissue conductive properties. Consecutive patients undergoing PAF and PsAF ablation were prospectively enrolled.

View Article and Find Full Text PDF

Due to the high mortality rate of ovarian cancer, there is a need to find novel strategies to improve current treatment modalities. Natural compounds offer great potential in this field but also require the careful design of systems for their delivery to cancer cells. Our study explored the anticancer effects of novel resveratrol (RSV)- and curcumin (CUR)-loaded core-shell nanoparticles in human ovarian cancer cells.

View Article and Find Full Text PDF

The emergence of RNA viruses driven by global population growth and international trade highlights the urgent need for effective antiviral agents that can inhibit viral replication. Nucleoside analogs, which mimic natural nucleotides, have shown promise in targeting RNA-dependent RNA polymerases (RdRps). Starting from protected 5-iodouridine, we report the synthesis of -substituted-(1,3-diyne)-uridines nucleosides and their phosphoramidate prodrugs.

View Article and Find Full Text PDF

Recommendation for the use of respiratory syncytial virus vaccines.

J Microbiol Immunol Infect

January 2025

Division of Infectious Diseases, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taiwan.

Respiratory syncytial virus (RSV) is the most common pathogen for young children hospitalized with bronchiolitis and pneumonia. Most infections occur below 1 year of age. RSV is also a significant viral pathogen for adults with respiratory tract infection.

View Article and Find Full Text PDF

"We've wanted to vaccinate against it and now we can": views of respiratory syncytial virus disease and immunisation held by caregivers of Aboriginal children in Perth, Western Australia.

Aust N Z J Public Health

January 2025

Wesfarmers Centre of Vaccines and Infectious Diseases, The Kids Research Institute Australia, University of Western Australia, Perth, Western Australia, Australia; School of Population Health, Curtin University, Perth, Western Australia, Australia. Electronic address:

Objective: Respiratory syncytial virus (RSV) is a major cause of respiratory infection with a higher burden in Aboriginal and Torres Strait Islander infants and children. We conducted a pilot qualitative study identifying disease knowledge and willingness to immunise following the changing immunisation landscape for infant RSV in 2024.

Methods: Yarning groups were held with a convenience sample of parents/carers of Aboriginal children attending playgroup at a metropolitan Aboriginal Health Service in Western Australia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!