Legal and practical challenges to authorization of gene edited plants in the EU.

N Biotechnol

Institute of Law Studies, Polish Academy of Sciences, Warsaw, Poland; Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden. Electronic address:

Published: January 2021

According to a predominant interpretation of the C-528/16 judgment of the Court of Justice of the European Union, mutants resulting from gene editing, even those featuring only single nucleotide variants, should be subject to the authorization procedures designed for organisms developed through genetic modification (i.e. insertion of large DNA fragments). In this article, we illustrate practical problems with the authorization of products of gene editing in the EU. On the basis of these problems, we analyze the influence of the current interpretation of EU legislation and judgment on the practical ability to authorize and detect such products on the EU market. We show that the predominant interpretation of the judgment leads to legally unacceptable consequences, in particular to the violation of the principle of proportionality with regard to individuals who wish to develop and market products of gene editing. As a result of our considerations, we show that the C-528/16 judgment did not need to be interpreted in the dominant way.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbt.2020.10.008DOI Listing

Publication Analysis

Top Keywords

gene editing
12
predominant interpretation
8
c-528/16 judgment
8
products gene
8
legal practical
4
practical challenges
4
challenges authorization
4
gene
4
authorization gene
4
gene edited
4

Similar Publications

Characterization of Tumor Antigens from Multi-omics Data: Computational Approaches and Resources.

Genomics Proteomics Bioinformatics

January 2025

Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.

Tumor-specific antigens, also known as neoantigens, have potential utility in anti-cancer immunotherapy, including immune checkpoint blockade (ICB), neoantigen-specific T cell receptor-engineered T (TCR-T), chimeric antigen receptor T (CAR-T), and therapeutic cancer vaccines (TCVs). After recognizing presented neoantigens, the immune system becomes activated and triggers the death of tumor cells. Neoantigens may be derived from multiple origins, including somatic mutations (single nucleotide variants, insertion/deletions, and gene fusions), circular RNAs, alternative splicing, RNA editing, and polymorphic microbiome.

View Article and Find Full Text PDF

Intracellular delivery of proteins is an important barrier in the development of strategies to deliver functional proteins and protein therapeutics into the cells to realize their full potential in biotechnology, biomedicine, cell-based therapies, and gene editing protein systems. Most of the intracellular protein delivery strategies involve the conjugation of cell penetrating peptides to enable and enhance the permeability of plasma membrane of mammalian cells to allow proteins to enter cytosol. Small molecules conjugations such as (p-methylphenyl) glycine, pyrenebutyrate and cysteines are used for the same purpose.

View Article and Find Full Text PDF

The conventional approaches to crop breeding, which rely predominantly on time-consuming and labor-intensive methods such as traditional hybridization and mutation breeding, face challenges in efficiently introducing targeted traits and generating diverse plant populations. Conversely, the emergence of genome editing technologies has ushered in a paradigm shift, enabling the precise and expedited manipulation of plant genomes to intentionally introduce desired characteristics. One of the most widespread editing tools is the CRISPR/Cas system, which has been used by researchers to study important biology-related problems.

View Article and Find Full Text PDF

Background: Megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare and progressive neurodegenerative disorder involving the white matter, is not adequately recapitulated by current disease models. Somatic cell reprogramming, along with advancements in genome engineering, may allow the establishment of human models of MLC for disease modeling and drug screening. In this study, we utilized cellular reprogramming and gene-editing techniques to develop induced pluripotent stem cell (iPSC) models of MLC to recapitulate the cellular context of the classical MLC-impacted nervous system.

View Article and Find Full Text PDF

Background And Aim: Mosaicism, which is characterized by the presence of wild-type and more than one mutant allele, poses a serious problem in zygotic gene modification through the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 system. Therefore, we used pig embryos to compare the gene editing efficiencies achieved by combining electroporation and lipofection using different aminopeptidase N (APN)-targeting guide RNA (gRNA) sequences.

Materials And Methods: Six gRNAs (gRNA1-6) with different target sequences were designed to target APN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!