Rice (Oryza sativa L.) growth and productivity has been negatively affected due to high soil salinity. However, some salt-tolerant plant growth-promoting bacteria (ST-PGPB) enhance crop growth and reduce the negative impacts of salt stress through regulation of some biochemical, physiological, and molecular features. Total thirty six ST-PGPB were isolated from sodic soil of eastern Uttar Pradesh, India, and screened for salt tolerance at different salt (NaCl) concentrations up to 2000 millimolar (mM). Out of thirty-six, thirteen strains indicated better growth and plant growth properties (PGPs) in NaCl amended medium. Among thirteen, one most effective Bacillus pumilus strain JPVS11 was molecularly characterized, which showed potential PGPs, such as indole-3-acetic acid (IAA),1-aminocyclo propane-1-carboxylicacid (ACC) deaminase activity, P-solubilization, proline accumulation and exopolysaccharides (EPS) production at different concentrations of NaCl (0 -1200 mM). Pot experiment was conducted on rice (Variety CSR46) at different NaCl concentrations (0, 50, 100, 200, and 300 mM) with and without inoculation of Bacillus pumilus strain JPVS11. At elevated concentrations of NaCl, the adverse effects on chlorophyll content, carotenoids, antioxidant activity was recorded in non-inoculated (only NaCl) plants. However, inoculation of Bacillus pumilus strain JPVS11 showed positive adaption and improve growth performance of rice as compared to non-inoculated in similar conditions. A significant (P < 0.05) enhancement plant height (12.90-26.48%), root length (9.55-23.09%), chlorophyll content (10.13-27.24%), carotenoids (8.38-25.44%), plant fresh weight (12.33-25.59%), and dry weight (8.66-30.89%) were recorded from 50 to 300 mM NaCl concentration in inoculated plants as compared to non-inoculated. Moreover, the plants inoculated with Bacillus pumilus strain JPVS11showed improvement in antioxidant enzyme activities of catalase (15.14-32.91%) and superoxide dismutase (8.68-26.61%). Besides, the significant improvement in soil enzyme activities, such as alkaline phosphatase (18.37-53.51%), acid phosphatase (28.42-45.99%), urease (14.77-47.84%), and β-glucosidase (25.21-56.12%) were recorded in inoculated pots as compared to non-inoculated. These results suggest that Bacillus pumilus strain JPVS11 is a potential ST-PGPB for promoting plant growth attributes, soil enzyme activities, microbial counts, and mitigating the deleterious effects of salinity in rice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micres.2020.126616DOI Listing

Publication Analysis

Top Keywords

bacillus pumilus
24
pumilus strain
24
strain jpvs11
20
plant growth
12
compared non-inoculated
12
enzyme activities
12
salt-tolerant plant
8
plant growth-promoting
8
growth attributes
8
nacl concentrations
8

Similar Publications

Assessing the impact of arsenic on symbiotic and free-living PGPB: plant growth promoting traits, bacterial compatibility and adhesion on soybean seed.

World J Microbiol Biotechnol

December 2024

Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, 5800, Río Cuarto, Córdoba, CP, Argentina.

Arsenic (As) contamination in agricultural groundwater and soil is a significant economic and health problem worldwide. It inhibits soybean (Glycine max (L.) Merr.

View Article and Find Full Text PDF

Introduction: Grapevine ( L.), one of the economically important fruit crops cultivated worldwide, harbours diverse endophytic bacteria (EBs) responsible for managing various fungal diseases. Anthracnose () (Penz.

View Article and Find Full Text PDF

Co-integration of laccase and xylanase from Bacillus pumilus into mini-cellulosome facilitates softwood sulfite pulp biobleaching and reduces hydrogen peroxide consumption.

Int J Biol Macromol

December 2024

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; School of Life Science, Hubei University, Wuhan 430062, PR China. Electronic address:

Biobleaching is an eco-friendly strategy that can reduce costs and pollution in the pulp and paper industry. Herein, an effective biobleaching approach was proposed using a novel multi-enzyme complex. The multi-enzyme complex was constructed based on mini-cellulosome scaffolding protein integrated with laccase (BpLac) and xylanase (BpXyn) from Bacillus pumilus.

View Article and Find Full Text PDF

Engineering a Binding Peptide for Oriented Immobilization and Efficient Bioelectrocatalytic Oxygen Reduction of Multicopper Oxidases.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.

Enzymatic fuel cells (EFCs) are emerging as promising technologies in renewable energy and biomedical applications, utilizing enzyme catalysts to convert the chemical energy of renewable biomass into electrical energy, known for their high energy conversion efficiency and excellent biocompatibility. Currently, EFCs face challenges of poor stability and catalytic efficiency at the cathodes, necessitating solutions to enhance the oriented immobilization of multicopper oxidases for improved heterogeneous electron transfer efficiency. This study successfully identified a surface-binding peptide (SBP, 13 amino acids) derived from a methionine-rich fragment (MetRich, 53 amino acids) in CueO through semirational design.

View Article and Find Full Text PDF

This study investigates the potential of chromium (VI) resistant bacterial isolates to alleviate heavy metal stress in fodder maize plants and enhance phytoremediation. Twenty-one bacterial strains were isolated from contaminated water, with five strains; (BHR1) (BHR2), (BHR4), (BHR5) and (BHR6) selected based on their significant plant-growth promoting (PGP) traits and heavy metal tolerance. Under chromium (Cr VI) stress, the BHR1 strain significantly improved seed germination, seedling length and vigor index of fodder maize variety (J 1007) especially at 150 mg/L Cr (VI), where these parameters increased by 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!