AquaSpark - Rapid Environmental Monitoring of Listeria monocytogenes.

Chimia (Aarau)

NEMIS Technologies AG, Überlandstrasse 109, CH-8600 Dübendorf, Switzerland.

Published: October 2020

In order to prevent microbial contamination of food, monitoring of the production environment, together with the rapid detection of foodborne pathogens have proven to be of utmost importance for Food Safety. Environmental monitoring should detect harmful pathogens at the earliest point in time in order for the necessary interventions to be taken. However, current detection methods fall short with regards to speed, ease of use, and cost. This article aims to present the idea behind NEMIS Technologies, a startup company making use of the novel AquaSpark technology for the development of a new generation of bacterial detection methods. These methods utilize chemiluminescence in order to detect live target bacteria in a short period of time compared to that of conventional methods. We show that dry-stressed can be detected within 24 hours, using small-molecule chemiluminescent probes, together with a bacteria-specific proprietary enrichment broth containing a cocktail of bacteriophages, which enhance the specificity and sensitivity. This novel platform technology has the potential to extend beyond environmental monitoring towards food analyses as well as veterinary and human health.

Download full-text PDF

Source
http://dx.doi.org/10.2533/chimia.2020.791DOI Listing

Publication Analysis

Top Keywords

environmental monitoring
12
detection methods
8
aquaspark rapid
4
rapid environmental
4
monitoring
4
monitoring listeria
4
listeria monocytogenes
4
monocytogenes order
4
order prevent
4
prevent microbial
4

Similar Publications

Diabetes is a chronic lifelong condition that requires consistent self-care and daily lifestyle adjustments. Effective disease management involves regular blood glucose monitoring and ongoing nursing support. Inadequate education and poor self-management are key factors contributing to increased mortality among diabetic individuals.

View Article and Find Full Text PDF

Despite extensive experience with influenza surveillance in humans in Senegal, there is limited knowledge about the actual situation and genetic diversity of avian influenza viruses (AIVs) circulating in the country, hindering control measures and pandemic risk assessment. Therefore, as part of the "One Health" approach to influenza surveillance, we conducted active AIV surveillance in two live bird markets (LBMs) in Dakar to better understand the dynamics and diversity of influenza viruses in Senegal, obtain genetic profiles of circulating AIVs, and assess the risk of emergence of novel strains and their transmission to humans. Cloacal swabs from poultry and environmental samples collected weekly from the two LBMs were screened by RT-qPCR for H5, H7, and H9 AIVs.

View Article and Find Full Text PDF

Functional Verification of Differentially Expressed Genes Following DENV2 Infection in .

Viruses

January 2025

State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China.

The dengue virus (DENV) is primarily transmitted by . Investigating genes associated with mosquito susceptibility to DENV2 offers a theoretical foundation for targeted interventions to regulate or block viral replication and transmission within mosquitoes. Based on the transcriptomic analyses of the midgut and salivary glands from infected with DENV2, alongside analyses of Aag2 cell infections, 24 genes potentially related to the regulation of infection with DENV2 were selected.

View Article and Find Full Text PDF

In the Mediterranean basin, urban forests are widely recognized as essential landscape components, playing a key role in nature-based solutions by enhancing environmental quality and providing a range of ecosystem services. The selection of woody plant species for afforestation and reforestation should prioritize native species that align with the biogeographical and ecological characteristics of the planting sites. Among these, L.

View Article and Find Full Text PDF

Climate change is compelling species to seek refuge at higher elevations and latitudes. While researchers commonly study these migrations using discontinuous elevational transects, this methodology may introduce significant biases into our understanding of species movement. These potential biases could lead to flawed biodiversity conservation policies if left unexamined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!