In this paper, the polar coded probabilistic amplitude shaping (PC-PAS) is investigated in a free space optical (FSO) communication system to combat the fading induced by turbulence. The achievable rate of multiple level coding (MLC) and bit-interleaved coded modulation (BICM) schemes with different distributions are studied in turbulence channels, which proves that the non-uniform distribution can achieve larger achievable rates than the uniform distribution in the FSO turbulence channel. And the PC-PAS techniques based on MLC and BICM are both investigated. For MLC-based PC-PAS, the dynamically frozen bits scheme is adopted and the modification to the labeling rule is proposed to label the non-negative constellation points. For the BICM-based PC-PAS, the exchange scheme is proposed to combine the polar codes and PAS technique. The Block error rate (BLER) is evaluated by the Monte Carlo simulation method. From the results, both the MLC-based and the BICM-based PC-PAS can improve the performance compared to the uniform distribution. And the PC-PAS based on MLC outperforms the PC-PAS based on BICM in the same turbulence condition.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.405241DOI Listing

Publication Analysis

Top Keywords

polar coded
8
coded probabilistic
8
probabilistic amplitude
8
amplitude shaping
8
free space
8
space optical
8
turbulence channel
8
uniform distribution
8
based mlc
8
bicm-based pc-pas
8

Similar Publications

Improving the regeneration of the tendon-bone interface (TBI) helps to decrease the risk of rotator cuff retears after repair surgeries. Unfortunately, the lack of inherent healing capacity of the TBI, insufficient mechanical properties, and abnormal and persistent inflammation during repair are the key factors leading to suboptimal healing of the rotator cuff. Therefore, a high-strength rotator cuff repair material capable of regulating the unbalanced immune response and enhancing the regeneration of the TBI is urgently needed.

View Article and Find Full Text PDF

is a heterotrophic bacterium commonly found in diverse marine environments. Here, we report the complete genome sequence of strain SOCE 003, which is 5,154,101 bp long, encoding 5,524 annotated protein-coding genes, 39 tRNAs, and 8 rRNAs. This genome information will help us understand the ecology of .

View Article and Find Full Text PDF

Chromosome-level reference genome and annotation of the Arctic fish Anisarchus medius.

Sci Data

January 2025

State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.

Anisarchus medius (Reinhardt, 1837) is a widely distributed Arctic fish, serving as an indicator of climate change impacts on coastal Arctic ecosystems. This study presents a chromosome-level genome assembly for A. medius using PacBio sequencing and Hi-C technology.

View Article and Find Full Text PDF

Epigenetic regulation of macrophage function in kidney disease: New perspective on the interaction between epigenetics and immune modulation.

Biomed Pharmacother

January 2025

Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China. Electronic address:

The interaction between renal intrinsic cells and macrophages plays a crucial role in the onset and progression of kidney diseases. In recent years, epigenetic mechanisms such as DNA methylation, histone modification, and non-coding RNA regulation have become essential windows for understanding these processes. This review focuses on how renal intrinsic cells (including tubular epithelial cells, podocytes, and endothelial cells), renal cancer cells, and mesenchymal stem cells influence the function and polarization status of macrophages through their own epigenetic alterations, and how the epigenetic regulation of macrophages themselves responds to kidney damage, thus participating in renal inflammation, fibrosis, and repair.

View Article and Find Full Text PDF

DANCR Knockdown Alleviates Neuroinflammation and Functional Recovery after Spinal Cord Injury via Regulating the ACTN4 / STAT3 Axis.

Arch Biochem Biophys

January 2025

Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China. Electronic address:

Polarization of microglia following spinal cord injury (SCI) is a pivotal pathological process of secondary injury. Although differentiation antagonistic nonprotein coding RNA (DANCR) has been implicated in immune and inflammatory responses across various diseases, its role in SCI still unclear. This research aimed to clarify the underlying mechanisms of DANCR in SCI recovery by investigating its expression pattern in microglia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!