In this paper, we present a novel concept for a multi-channel swept source optical coherence tomography (OCT) system based on photonic integrated circuits (PICs). At the core of this concept is a low-loss polarization dependent path routing approach allowing for lower excess loss compared to previously shown PIC-based OCT systems, facilitating a parallelization of measurement units. As a proof of concept for the low-loss path routing, a silicon nitride PIC-based single-channel swept source OCT system operating at 840 nm was implemented and used to acquire in-vivo tomograms of a human retina. The fabrication of the PIC was done via CMOS-compatible plasma-enhanced chemical vapor deposition to allow future monolithic co-integration with photodiodes and read-out electronics. A performance analysis using the results of the implemented photonic building blocks shows a potential tenfold increase of the acquisition speed for a multi-channel system compared to an ideal lossless single-channel system with the same signal-to-noise ratio.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.404588 | DOI Listing |
Eur J Ophthalmol
January 2025
Ophthalmology Department, ULS São José, Lisboa, Portugal.
Purpose: To compare changes in angle morphology, anterior chamber depth (ACD) and refractive prediction error (PE) after phacoemulsification between pseudoexfoliative (PEX) and non-PEX eyes.
Methods: Prospective case-control study of eyes submitted to cataract surgery. Biometric data and angle parameters - Anterior Chamber Angle (ACA), Angle Opening Distance (AOD), Scleral Spur Angles (SSA) and Trabecular Iris Space Area (TISA) - were measured preoperatively and 1-month postoperatively through swept-source anterior segment optical coherence tomography.
Heliyon
January 2025
Department of Cataract, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
Purpose: Using a fully automated multitask deep learning method, which enabled simultaneous segmentation and quantification of all major anterior segment structures with swept-source optical coherence tomography (SS-OCT), we aimed to investigate the three-dimensional (3D) alterations in iris morphology before and after implantable collamer lens (ICL) surgery.
Methods: All enrolled patients underwent anterior segment SS-OCT (ANTERION) within one week before and after ICL surgery. A multitask network automatically performed iris SS-OCT image segmentation and quantitative measurements of 3D iris morphology (iris thickness and volume of the inner 1-mm annular area and the outer 1-2-mm annular area, iris curvature [I-Curve], and iris smooth index [SI]).
Ophthalmology
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510623, China. Electronic address:
Purpose: To describe the longitudinal changes in peripapillary retinal nerve fiber layer (pRNFL) and macular ganglion cell-inner plexiform layer (mGC-IPL) thicknesses in highly myopic eyes with and without glaucoma, and to investigate the effects of high myopia (HM) on the sectoral patterns of pRNFL and mGC-IPL thinning.
Design: Longitudinal cohort study.
Participants: A total of 243 eyes from 243 individuals with 3-year follow-up were included in this study: 109 eyes in the HM group, 64 eyes in the open-angle glaucoma (OAG) group and 70 eyes in the highly myopic glaucoma (HMG) group.
Ophthalmic Surg Lasers Imaging Retina
January 2025
Tractional retinoschisis (TRS) secondary to proliferative diabetic retinopathy (PDR) may be differentiated from tractional retinal detachment (TRD) by its characteristically nonprogressive course. The purpose of the current study was to describe the use of swept-source optical coherence tomography angiography (SS-OCTA) in the diagnosis and monitoring of TRS secondary to PDR. Retrospective, consecutive case series of patients with TRS secondary to PDR are featured.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!