AI Article Synopsis

  • Calmodulin-like proteins (CMLs) are essential for regulating how plants respond to environmental stresses and developmental changes.
  • Four different mRNA splice variants of a grapevine gene were identified, which show varying responses to desiccation, heat, cold, high salinity, and high mannitol stress.
  • The study suggests that these variants play a significant role in enhancing grapevine resilience to cold stress, with specific splice forms contributing to improved growth and survival rates in transgenic plants.

Article Abstract

Calmodulin-like proteins (CMLs) represent a large family of plant calcium sensor proteins involved in the regulation of plant responses to environmental cues and developmental processes. In the present work, we identified four alternatively spliced mRNA forms of the grapevine gene that encoded proteins with distinct N-terminal regions. We studied the transcript abundance of , , and in wild-growing grapevine Rupr. in response to desiccation, heat, cold, high salinity, and high mannitol stress using quantitative real-time RT-PCR. The levels of all four splice variants of were highly induced in response to cold stress. In addition, and forms were highly modulated by all other abiotic stress treatments. Constitutive expression of and improved biomass accumulation of callus cell cultures under prolonged low temperature stress. Heterologous expression of the grapevine and splice variants in improved survival rates of the transgenic plants after freezing. The overexpression enhanced activation of the cold stress-responsive marker genes and , while overexpression-, , , and genes after freezing stress in the transgenic . The results indicate that the grapevine gene acts as a positive regulator in the plant response to cold stress. The detected variety of transcripts and their distinct transcriptional responses suggested that this expansion of mRNA variants could contribute to the diversity of grapevine adaptive reactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663043PMC
http://dx.doi.org/10.3390/ijms21217939DOI Listing

Publication Analysis

Top Keywords

abiotic stress
8
grapevine gene
8
splice variants
8
response cold
8
cold stress
8
stress
7
grapevine
6
grapevine calmodulin-like
4
calmodulin-like protein
4
protein gene
4

Similar Publications

Blood storage lesion induces cytosolic and membrane changes driven in part by hemoglobin (Hb) oxidation reactions within red blood cells (RBCs). A novel gel formulation containing the antioxidant curcuminoids in a biocompatible solvent system was used to deliver curcumin into RBCs. Incubation of peroxide treated RBCs stored in PBS with curcumin gel led to a reduction in prooxidant ferrylHb and recovery in ATP.

View Article and Find Full Text PDF

Iron oxide nanoparticles (IONPs) have the potential to be utilized in a multitude of fields, including biomedicine. Consequently, the potential health risks associated with their use must be carefully considered. Most biosafety evaluations of IONPs have focused on examining the impact of the material's distinctive physicochemical attributes.

View Article and Find Full Text PDF

Studies of in situ plant response and adaptation to complex environmental stresses, are crucial for understanding the mechanisms of formation and functioning of ecosystems of anthropogenically transformed habitats. We study short- and long-term responses of photosynthetic apparatus (PSA) and anti-oxidant capacity to complex abiotic stresses of common plants Calamagrostis epigejos and Solidago gigantea in semi-natural (C) and heavy metal contaminated habitats (LZ). We found significant differences in leaf pigment content between both plant species growing on LZ plots and their respective C populations.

View Article and Find Full Text PDF

Understanding the genetic basis of drought tolerance in safflower (Carthamus tinctorius L.) is essential for developing resilient varieties. In this study, we performed a genome-wide association study (GWAS) using DArTseq markers to identify marker-trait associations (MTAs) linked to drought tolerance across 90 globally diverse safflower genotypes.

View Article and Find Full Text PDF

The quality of cigar tobacco leaves is profoundly affected by the timing of their harvest, with both early and late collections resulting in inferior characteristics. While the relationship between maturity and physiological metabolic processes is acknowledged, a comprehensive understanding of the physiological behavior of cigar leaves harvested at different stages remains elusive. This research investigated the physiological and metabolomic profiles of the cigar tobacco variety CX-014, grown in Danjiangkou City, Hubei Province, with leaves sampled at 35 (T1), 42 (T2), 49 (T3), and 56 (T4) days post-inflorescence removal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!