Farnesyl diphosphate (FPP)-derived isoprenoids represent a diverse group of plant secondary metabolites with great economic potential. To enable their efficient production in the heterologous host , we refined a metabolic engineering strategy using the CRISPR/Cas9 system with the aim of increasing the availability of FPP for downstream reactions. The strategy included the overexpression of mevalonate pathway (MVA) genes, the redirection of metabolic flux towards desired product formation and the knockout of genes responsible for competitive reactions. Following the optimisation of culture conditions, the availability of the improved FPP biosynthesis for downstream reactions was demonstrated by the expression of a germacrene synthase from dandelion. Subsequently, biosynthesis of significant amounts of germacrene-A was observed in the most productive strain compared to the wild type. Thus, the presented strategy is an excellent tool to increase FPP-derived isoprenoid biosynthesis in yeast.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7712416PMC
http://dx.doi.org/10.3390/bioengineering7040135DOI Listing

Publication Analysis

Top Keywords

metabolic engineering
8
downstream reactions
8
combinatorial metabolic
4
engineering enhanced
4
enhanced production
4
production fpp-derived
4
fpp-derived sesquiterpene
4
sesquiterpene germacrene
4
germacrene farnesyl
4
farnesyl diphosphate
4

Similar Publications

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

White clover () is an excellent perennial cold-season ground-cover plant for municipal landscaping and urban greening. It is, therefore, widely distributed and utilized throughout the world. However, poor salt tolerance greatly limits its promotion and application.

View Article and Find Full Text PDF

High-fat diet (HFD)-induced obesity represents a significant challenge to male reproductive health, affecting approximately 13% of the global adult population. This comprehensive review synthesizes current evidence regarding mulberry ( L.) fruit extract's therapeutic potential for HFD-induced male reproductive dysfunction.

View Article and Find Full Text PDF

Depression, a serious mental illness, is characterized by high risk, high incidence, persistence, and tendency to relapse, posing a significant burden on global health. The connection between depression and gut microbiota is an emerging field of study in psychiatry and neuroscience. Understanding the gut-brain axis is pivotal for understanding the pathogenesis and treatment of depression.

View Article and Find Full Text PDF

The Application of Olive-Derived Polyphenols on Exercise-Induced Inflammation: A Scoping Review.

Nutrients

January 2025

Cambridge Centre for Sport and Exercise Sciences (CCSES), Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK.

Background/objectives: There is current scientific interest pertaining to the therapeutic effects of olive-derived polyphenols (ODPs), in particular their associated anti-inflammatory properties, following the wealth of research surrounding the physiological impact of the Mediterranean Diet (MD). Despite this association, the majority of the current literature investigates ODPs in conjunction with metabolic diseases. There is limited research focusing on ODPs and acute inflammation following exercise, regardless of the knowledge surrounding the elevated inflammatory response during this time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!