The microstructure and mechanical properties of Al-0.35Fe alloys with a series of different zirconium (Zr) additions from 0.1 to 0.4% are investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy and tensile testing. The as-cast structure of the alloys varies with the Zr content. When the content of Zr is 0.1%, Zr dissolves into the aluminum (Al) matrix completely and iron (Fe) concentrates along the boundary in a network of eutectic AlFe. With the increase in Zr content to 0.2% and above, nanoscale AlZr particles appear in the alloy. With the Zr content increasing from 0.1 to 0.4%, the grain size of the Al matrix decreases from 73 to 23 μm. The morphology of the eutectic AlFe phase changes from short rod-like to an agglomerated structure consisting of finer and shorter rod-like shapes. The tensile and yield strengths increase while the total elongation decreases with increasing Zr content. The strengthening mechanism of the alloy can be attributed to the combination of fine-grain, solution and second-phase strengthening.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660287 | PMC |
http://dx.doi.org/10.3390/ma13214744 | DOI Listing |
J Environ Manage
January 2025
Department of Finance, Feng Chia University, Taichung, Taiwan. Electronic address:
The investigation of the unintended impact of pairing assistance policies on carbon emissions in administrative boundary regions is critical for achieving the "dual carbon" goals. This paper utilizes a sample of cities from the Pearl River Delta and the eastern and western regions of Guangdong, China, spanning from 2006 to 2020. A quasi-natural experiment based on the co-construction of industrial parks is employed to examine its impact on carbon emissions in boundary regions.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China. Electronic address:
Thiocyanate (SCN) is a highly toxic reducing inorganic compound commonly found in various nitrogen-rich wastewater and is also a promising electron donor for mixotrophic denitrification. However, its extent of involvement in mixotrophic denitrification under conditions of carbon limitation or excess remains unclear. In this study, five reactors were constructed to investigate the participation and microbial mechanisms of SCN in mixotrophic denitrification under high C/N and low C/N conditions.
View Article and Find Full Text PDFAdv Colloid Interface Sci
January 2025
School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China.
Rare earth elements (REEs) are crucial metallic resources that play an essential role in national economies and industrial production. The reclaimation of REEs from wastewater stands as a significant supplementary strategy to bolster the REEs supply. Adsorption techniques are widely recognized as environmentally friendly and sustainable methods for the separation of REEs from wastewater.
View Article and Find Full Text PDFAquat Toxicol
January 2025
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
Antibiotics and microplastics (MPs) are two classes of emerging contaminants that are commonly found in various water environments. However, how different sized MPs affect the toxicity and biodegradation of antibiotics remains poorly understood. We investigated the effects of polystyrene (PS) MPs with different particle sizes (100 nm and 30 μm) on the physiological responses and degradation behavior of Phaeodactylum tricornutum to sulfamerazine (SMR).
View Article and Find Full Text PDFInt J Med Inform
January 2025
World Health Organization Headquarters Switzerland.
Background: This paper addresses the importance of timely and robust information systems that underpin emergency response decision-making, as evidenced during the COVID-19 pandemic in the WHO European Region. Recognizing the relevance of these systems, we propose the strengthening of national emergency response information management systems (ERIMS) within the broader digital health information system (HIS) framework. We aim to develop and present an innovative assessment tool designed to evaluate and assist in the strengthening of ERIMS, contributing to a more resilient and effective emergency response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!