We perform a numerical simulation of the effects of an orthogonal magnetic field on charge transport and shot noise in an armchair graphene ribbon with a lattice of antidots. This study relies on our envelope-function based code, in which the presence of antidots is simulated through a nonzero mass term and the magnetic field is introduced with a proper choice of gauge for the vector potential. We observe that by increasing the magnetic field, the energy gap present with no magnetic field progressively disappears, together with features related to commensurability and quantum effects. In particular, we focus on the behavior for high values of the magnetic field: we notice that when it is sufficiently large, the effect of the antidots vanishes and shot noise disappears, as a consequence of the formation of edge states crawling along the boundaries of the structure without experiencing any interaction with the antidots.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7690714 | PMC |
http://dx.doi.org/10.3390/nano10112098 | DOI Listing |
ACS Sens
January 2025
CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
Flexible pressure sensors are pivotal in advancing artificial intelligence, the Internet of Things (IoT), and wearable technologies. While microstructuring the functional layer of these sensors effectively enhances their performance, current fabrication methods often require complex equipment and time-consuming processes. Herein, we present a novel magnetization-induced self-assembly method to develop a magnetically grown microneedle array as a dielectric layer for flexible capacitive pressure sensors.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, Saitama Medical University, Saitama, Japan.
Purpose: This study evaluates the effect of 6° horizontal gaze tolerance on visual field mean sensitivity (MS) in patients with glaucoma using a binocular head-mounted automated perimeter, following findings of structural changes in the posterior globe from magnetic resonance imaging and optical coherence tomography.
Methods: In this cross-sectional study, a total of 161 eyes (85 primary open-angle glaucoma [POAG] and 76 healthy) from 117 participants were included. Logistic regression and 1:1 matched analysis assessed the propensity score for glaucoma and healthy eyes, considering age, sex, and axial length as confounders.
Chemistry
January 2025
University of Sussex, Department of Chemistry, School of Life Sciences, BN1 9QJ, Brighton, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
The synthesis, structures and magnetic properties of an η5-silole complex and an η5-stannole complex of erbium are reported. The sandwich complex anions [(η5-CpSi)Er(η8-COT)]- and [(η5-CpSn)Er(η8-COT)]-, where CpSi is [SiC4-2,5-(SiMe3)2-3,4-Ph2]2- (1Si), CpSn is [SnC4-2,5-(SiMe3)2-3,4-Me2]2- (1Sn) and COT = cyclo-octatetraenyl, were obtained as their [K(2.2.
View Article and Find Full Text PDFDigit Health
January 2025
Department of Urology, General Hospital of Northern Theater Command, Shenyang, China.
Purpose: Prostate cancer (PCa) is the second most common cancer in males worldwide, requiring improvements in diagnostic imaging to identify and treat it at an early stage. Bi-parametric magnetic resonance imaging (bpMRI) is recognized as an essential diagnostic technique for PCa, providing shorter acquisition times and cost-effectiveness. Nevertheless, accurate diagnosis using bpMRI images is difficult due to the inconspicuous and diverse characteristics of malignant tumors and the intricate structure of the prostate gland.
View Article and Find Full Text PDFMater Today Bio
February 2025
Anhui University of Chinese Medicine, Hefei, 230012, China.
The therapeutic effect of immune checkpoint inhibitors (ICIs) in triple-negative breast cancer (TNBC) is unsatisfactory. The immune "cold" microenvironment caused by tumor-associated fibroblasts (TAFs) has an adverse effect on the antitumor response. Therefore, in this study, mixed cell membrane-coated porous magnetic nanoparticles (PMNPs) were constructed to deliver salvianolic acid B (SAB) to induce an antitumor immune response, facilitating the transition from a "cold" to a "hot" tumor and ultimately enhancing the therapeutic efficacy of immune checkpoint inhibitors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!