A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In-situ lipid and fatty acid extraction methods to recover viable products from Nannochloropsis sp. | LitMetric

In-situ lipid and fatty acid extraction methods to recover viable products from Nannochloropsis sp.

Sci Total Environ

DCU Water Institute, School of Chemical Science, Dublin City University, Ireland. Electronic address:

Published: December 2020

Nannochloropsis sp. has received increased attention by researchers in recent years due to its complexity and abundance of lipid structures. The lipids of this microalgae species have been identified to contain large quantities of neutral lipids which are capable of producing raw materials for nutraceuticals, food additives and biofuels. The production of biodiesel has received the greatest attention as there is an increase in global demand for both more fuel and more environmentally sustainable methods to produce such resources. The greatest challenges facing industries to mass produce viable products from microalgae involve the degradation of the cell wall and extracting the fatty acid of interest due to high costs. Various studies have shown that the extraction lipids from the microalgae can greatly influence the overall fatty acid composition. Different extraction methods can result in recovering higher quantities of either saturated fatty acids, monounsaturated fatty acids or polyunsaturated fatty acids. Biodiesel production requires higher quantities of saturated fatty acids and monosaturated fatty acids as increased quantities of polyunsaturated fatty acids result in oxidation which decreases the performance of the biodiesel. Whereas, polyunsaturated fatty acids are required in order to produce pharmaceuticals and food additives such as omega 3. This review will focus on how different in-situ extraction methods for lipid and fatty acid recovery, influence the fatty acid composition of various Nannochloropsis species (oculate, gaditana, salina and oceanica). The mechanical methods (microwave, ultrasonic and supercritical‑carbon dioxide) of extraction for Nannochloropsis sp. will be critically evaluated. The use of enzymes will also be addressed, for their ability to extract fatty acids in a more environmentally friendly manner. This paper will report on the viable by-products which can be produced using different extraction methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.142464DOI Listing

Publication Analysis

Top Keywords

fatty acids
32
fatty acid
20
extraction methods
16
fatty
13
polyunsaturated fatty
12
lipid fatty
8
viable products
8
lipids microalgae
8
food additives
8
influence fatty
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!