A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Highly Conductive Garnet-Type Electrolytes: Access to LiLaZrTaO Prepared by Molten Salt and Solid-State Methods. | LitMetric

Tantalum-doped garnet (LiLaZrTaO, LLZTO) is a promising candidate to act as a solid electrolyte in all-solid-state batteries owing to both its high Li conductivity and its relatively high robustness against the Li metal. Synthesizing LLZTO using conventional solid-state reaction (SSR) requires, however, high calcination temperature (>1000 °C) and long milling steps, thereby increasing the processing time. Here, we report on a facile synthesis route to prepare LLZTO using a molten salt method (MSS) at lower reaction temperatures and shorter durations (900 °C, 5 h). Additionally, a thorough analysis on the properties, ., morphology, phase purity, and particle size distribution of the LLZTO powders, is presented. LLZTO pellets, either prepared by the MSS or the SSR method, that were sintered in a Pt crucible showed Li ion conductivities of up to 0.6 and 0.5 mS cm, respectively. The corresponding activation energy values are 0.37 and 0.38 eV, respectively. The relative densities of the samples reached values of approximately 96%. For comparison, LLZTO pellets sintered in alumina crucibles or with γ-AlO as sintering aid revealed lower ionic conductivities and relative densities with abnormal grain growth. We attribute these observations to the formation of Al-rich phases near the grain boundary regions and to a lower Li content in the final garnet phase. The MSS method seems to be a highly attractive and an alternative synthetic approach to SSR route for the preparation of highly conducting LLZTO-type ceramics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c14056DOI Listing

Publication Analysis

Top Keywords

molten salt
8
llzto pellets
8
relative densities
8
llzto
6
highly conductive
4
conductive garnet-type
4
garnet-type electrolytes
4
electrolytes access
4
access lilazrtao
4
lilazrtao prepared
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!