The fungal kingdom is large and diverse, representing extremes of ecology, life cycles and morphology. At a cellular level, the diversity among fungi is particularly apparent at the spindle pole body (SPB). This nuclear envelope embedded structure, which is essential for microtubule nucleation, shows dramatically different morphologies between different fungi. However, despite phenotypic diversity, many SPB components are conserved, suggesting commonalities in structure, function and duplication. Here, I review the organization of the most well-studied SPBs and describe how advances in genomics, genetics and cell biology have accelerated knowledge of SPB architecture in other fungi, providing insights into microtubule nucleation and other processes conserved across eukaryotes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7965227 | PMC |
http://dx.doi.org/10.1016/j.sbi.2020.09.008 | DOI Listing |
PLoS Genet
January 2025
Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India.
During chromosome segregation, the spindle assembly checkpoint (SAC) detects errors in kinetochore-microtubule attachments. Timely activation and maintenance of the SAC until defects are corrected is essential for genome stability. Here, we show that shugoshin (Sgo1), a conserved tension-sensing protein, ensures the maintenance of SAC signals in response to unattached kinetochores during mitosis in a basidiomycete budding yeast Cryptococcus neoformans.
View Article and Find Full Text PDFCentrioles play central roles in ciliogenesis and mitotic spindle assembly. Once assembled, centrioles exhibit long-term stability, a property essential for maintaining numerical control. How centriole stability is achieved and how it is lost in certain biological contexts are still not completely understood.
View Article and Find Full Text PDFBiol Open
December 2024
Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France.
The SUMO-targeted ubiquitin ligase (STUbL) family is involved in multiple cellular processes via a wide range of mechanisms to maintain genome stability. One of the evolutionarily conserved functions of STUbL is to promote changes in the nuclear positioning of DNA lesions, targeting them to the nuclear periphery. In Schizossacharomyces pombe, the STUbL Slx8 is a regulator of SUMOylated proteins and promotes replication stress tolerance by counteracting the toxicity of SUMO conjugates.
View Article and Find Full Text PDFCell Death Dis
January 2025
Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia.
Polyploidy is a common outcome of chemotherapies, but there is conflicting evidence as to whether polyploidy is an adverse, benign or even favourable outcome. We show Aurora B kinase inhibitors efficiently promote polyploidy in many cell types, resulting in the cell cycle exit in RB and p53 functional cells, but hyper-polyploidy in cells with loss of RB and p53 function. These hyper-polyploid cells (>8n DNA content) are viable but have lost long-term proliferative potential in vitro and fail to form tumours in vivo.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Molecular and Cellular Biology, Harvard University, Cambridge MA, USA.
In meiosis, one round of DNA replication followed by two rounds of chromosome segregation halves the ploidy of the original cell. Accurate chromosome segregation in meiosis I depends on recombination between homologous chromosomes. Sister centromeres attach to the same spindle pole in this division and only segregate in meiosis II.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!