Polymersomes from Hybrids -Polypeptides for Drug Delivery Applications.

Methods Mol Biol

Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, Greece.

Published: March 2021

Recently, the explosion of progress of materials at the nanoscale level has paved the way for a new category of healthcare technologies termed nanomedicine. Nanomedicine involves materials at the nanometer level for products that can improve the currently used technologies for biomedical applications. While traditional therapeutics have allowed for limited control of their distribution in the body and clearing times, engineering at the nanoscale level has allowed for significant advances in biocompatibility, biodistribution, and pharmacokinetics. Among all materials, polymers have dominated the nanomedicine world, due to their ability to manipulate their properties by combining different materials in a wide variety of macromolecular architectures. The development of novel polymeric materials is guided by the goal of improving patient survival and quality of life by increasing the bioavailability of drug to the site of disease, targeting delivery to the pathological tissues, increasing drug solubility, and minimizing systemic side effects. Polymersomes (vesicles) are the only type of polymeric nanocarriers that can physically encapsulate at the same nanoparticle hydrophilic drugs in their aqueous interior and/or hydrophobic agents within their lamellar membranes. Polymersomes have been shown to possess superior biomaterial properties compared to liposomes, including greater stability and storage capabilities, as well as prolonged circulation time.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-0920-0_11DOI Listing

Publication Analysis

Top Keywords

nanoscale level
8
materials
5
polymersomes hybrids
4
hybrids -polypeptides
4
-polypeptides drug
4
drug delivery
4
delivery applications
4
applications explosion
4
explosion progress
4
progress materials
4

Similar Publications

Understanding paint structures at the nanoscopic level can address key questions related to artistic techniques, paint formulation, and long-term preservation of artworks. This involves examining spatial chemical complexity, the formation of molecular networks, and interactions between organic and inorganic constituents. Depending on the paint preparation methods, proteins and drying oils, the most common binders in traditional artistic practices, can be integrated to produce paints with diverse structures and nanoscale chemical intricacies.

View Article and Find Full Text PDF

Atomic force microscopy-infrared spectroscopy (AFM-IR) is a photothermal scanning probe technique that combines nanoscale spatial resolution with the chemical analysis capability of mid-infrared spectroscopy. Using this hybrid technique, chemical identification down to the single molecule level has been demonstrated. However, the mechanism at the heart of AFM-IR, the transduction of local photothermal heating to cantilever deflection, is still not fully understood.

View Article and Find Full Text PDF

A glovebox-integrated confocal microscope for quantum sensing in inert atmosphere.

Rev Sci Instrum

January 2025

Department Spins in Energy Conversion and Quantum Information Science (ASPIN), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.

Confocal microscopy is an invaluable tool for studying fluorescent materials and finds a wide application in biology and in quantum sensing. Usually, these experiments are performed under ambient conditions, but many materials are air sensitive (for example, black phosphorus) and degrade quickly under the strong laser irradiance. Here, we present a glovebox-integrated confocal microscope designed for nitrogen-vacancy (NV) center-based nano-scale sensing and NMR spectroscopy in an inert gas atmosphere.

View Article and Find Full Text PDF

Nanoplastics, emerging as pervasive environmental pollutants, pose significant threats to ecosystems and human health due to their small size and potential toxicity. However, detecting trace levels of nanoplastics remains challenging because of limitations in the current analytical methods. Herein, we propose a method that combines superhydrophobic enrichment with SERS analysis for detecting trace nanoplastics in aqueous environments.

View Article and Find Full Text PDF

Molecular electronics exhibiting resistive-switching memory features hold great promise for the next generation of digital technology. In this work, electrosynthesis of ruthenium polypyridyl nanoscale oligomeric films is demonstrated on an indium tin oxide (ITO) electrode followed by an ITO top contact deposition yielding large-scale (junction area = 0.7 × 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!