Although bioaugmentation is known as effective and environmentally friendly method increasing removal of hydrocarbons from oil-contaminated soil, it sometimes fails in soil restoration and disturbs the ecological state of soil. We studied possible scenarios of the introduction of oil-degrading bacteria into oil-contaminated podzolic soil assessing the environmental safety of different bacterial preparations in a long-term field experiment. Integral indicators characterizing the state of biocenosis included biological activity of soil and aboveground biomass of grasses. It has been established that bacterial preparations can have both positive and negative effects on the ecological state of soil and oil biodegradation. Of the five bacterial preparations studied, one had a pronounced positive effect on soil biological activity and oil mineralization processes. Two preparations did not accelerate oil biodegradation and were characterized by a weaker positive effect or even a lack of influence. Two more bacterial preparations had a significant negative impact on soil biological properties. These preparations slowed oil mineralization in soil. Both positive and negative effects of bacterial preparations were observed only during the first two years after their application. All preparations were not effective during the latter stages of long-term remediation processes. The results indicate that successful application of bioaugmentation for the restoration of oil-contaminated soil requires testing of environmental safety of bacterial preparations in a long-term field experiments prior to any treatment processes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10653-020-00755-4DOI Listing

Publication Analysis

Top Keywords

bacterial preparations
28
oil-contaminated soil
12
soil
11
preparations
10
ecological state
8
state soil
8
environmental safety
8
safety bacterial
8
preparations long-term
8
long-term field
8

Similar Publications

Total Synthesis of LL-A0341β.

Org Lett

January 2025

Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, Ontario, Canada N2L3G1.

The first total synthesis of cyclic depsipeptide antibiotic LL-A0341β (LL) is described. The configuration of the β-methyltryptophan (β-MeTrp) residue was established by preparing all four stereoisomers of Fmoc-β-MeTrp which were used for the synthesis of LL via Fmoc solid phase peptide synthesis. The most active of the four peptides was the one containing (2,3)-β-MeTrp.

View Article and Find Full Text PDF

The increasing prevalence of cancer and bacterial resistance necessitates more effective anti-cancer and anti-bacterial treatments. This study explores the potential of medicinal plants, specifically () and (), in addressing this need, aiming to uncover new therapeutic interventions. Various extraction methods for the leaves of and were employed to investigate the anti-bacterial and anti-cancer properties of these herbs.

View Article and Find Full Text PDF

In an era where chemical synthesis of nanomaterial is accounting for the generation of toxic wastes, leading to nanotoxicity, the present work focuses on the extraction of carbon nanodots from available natural sources such as turmeric smoke. The extracted carbon nanodots were characterized and their physical and chemical attributes were confirmed. The antibacterial property of the isolated carbon nanodots was tested against coliforms and oral bacteria.

View Article and Find Full Text PDF

This in vitro research assessed the influence of the instrument kinematics (rotary and reciprocating) and the apical preparation limit on the root canal disinfection and apical bacterial extrusion. After 21 days of Enterococcus faecalis biofilm formation in 72 mesial root canals of mandibular molars, the root canals were distributed into 2 groups (n = 36) according to the systems used for preparation: ProDesign S and Reciproc. The groups were redistributed according to the limit of apical preparation (n = 11): (a) 1 mm up to the apical foramen (TL-1); (b) at the apical foramen (TL = 0); (c) 1 mm beyond the apical foramen (TL + 1).

View Article and Find Full Text PDF

Ferritin-based hybrid macromolecules experience unusual shift of stoichiometry distribution.

Int J Biol Macromol

December 2024

Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russian Federation; Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, 141980, Russian Federation. Electronic address:

Ferritin-based hybrids are large 24-subunit macromolecules of megadalton scale have prospective applications ranging from drug delivery to recombinant vaccines, however, their rational design is challenging. Here, we architectured hybrids based on ferritin subunits from Helicobacter pylori and ones fused with a homolog of the Small Ubiquitin-like Modifier protein. We firstly revealed the stochastic nature of bacterial ferritin-based hybrids self-assembly by observing a sequential range of stoichiometries at totally different sample preparation procedures: coexpression in Escherichia coli cells and pH-dependent dis/reassembly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!