Sleep deprivation and diet affect human GH gene expression in transgenic mice in vivo.

Endocr Connect

Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.

Published: December 2020

Human (h) growth hormone (GH) production studies are largely limited to effects on secretion. How pituitary hGH gene (hGH-N/GH1) expression is regulated is important in our understanding of the role hGH plays in physiology and disease. Here we assess for the first time the effect of sleep deprivation (SD) and high-fat diet (HFD) on hGH-N expression in vivo using partially humanized 171hGH/CS transgenic (TG) mice, and attempted to elucidate a role for DNA methylation. Activation of hGH-N expression requires interactions between promoter and upstream locus control region (LCR) sequences including pituitary-specific hypersensitive site (HS) I/II. Both SD and diet affect hGH secretion, but the effect of SD on hGH-N expression is unknown. Mice fed a HFD or regular chow diet for 3 days underwent SD (or no SD) for 6 h at Zeitgeber time (ZT) 3. Serum and pituitaries were assessed over 24 h at 6-h intervals beginning at ZT 14. SD and HFD caused significant changes in serum corticosterone and insulin, as well as hGH and circadian clock-related gene RNA levels. No clear association between DNA methylation and the negative effects of SD or diet on hGH RNA levels was observed. However, a correlation with increased methylation at a CpG (cytosine paired with a guanine) in a putative E-box within the hGH LCR HS II was suggested in situ. Methylation at this site also increased BMAL1/CLOCK-related nuclear protein binding in vitro. These observations support an effect of SD on hGH synthesis at the level of gene expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7774756PMC
http://dx.doi.org/10.1530/EC-20-0354DOI Listing

Publication Analysis

Top Keywords

hgh-n expression
12
sleep deprivation
8
diet affect
8
gene expression
8
transgenic mice
8
dna methylation
8
rna levels
8
hgh
7
expression
6
diet
5

Similar Publications

The 14-kilodalton human growth hormone (14 kDa hGH) N-terminal fragment derived from the proteolytic cleavage of its full-length counterpart has been shown to sustain antiangiogenic potentials. This study investigated the antitumoral and antimetastatic effects of 14 kDa hGH on B16-F10 murine melanoma cells. B16-F10 murine melanoma cells transfected with 14 kDa hGH expression vectors showed a significant reduction in cellular proliferation and migration associated with an increase in cell apoptosis in vitro.

View Article and Find Full Text PDF

Dexamethasone Rescues an Acute High-Fat Diet-Induced Decrease in Human Growth Hormone Gene Expression in Male Partially Humanized CD-1 Mice.

DNA Cell Biol

March 2021

Department of Physiology & Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.

Obesity in puberty, already a time of insulin resistance, increases the risk of developing type 2 diabetes. Human (h) growth hormone (GH) levels also peak during puberty, where it contributes to growth and energy homeostasis through positive effects on maintaining pancreatic β cell mass. Thus, it is important to understand the effects of overeating and obesity on hGH production in puberty.

View Article and Find Full Text PDF

Sleep deprivation and diet affect human GH gene expression in transgenic mice in vivo.

Endocr Connect

December 2020

Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.

Human (h) growth hormone (GH) production studies are largely limited to effects on secretion. How pituitary hGH gene (hGH-N/GH1) expression is regulated is important in our understanding of the role hGH plays in physiology and disease. Here we assess for the first time the effect of sleep deprivation (SD) and high-fat diet (HFD) on hGH-N expression in vivo using partially humanized 171hGH/CS transgenic (TG) mice, and attempted to elucidate a role for DNA methylation.

View Article and Find Full Text PDF

Escherichia coli is a heavily used platform for the production of biotherapeutic and other high-value proteins, and a favored strategy is to export the protein of interest to the periplasm to simplify downstream processing and facilitate disulfide bond formation. The Sec pathway is the standard means of transporting the target protein but it is unable to transport complex or rapidly folding proteins because the Sec system can only transport proteins in an unfolded state. The Tat system also operates to transport proteins to the periplasm, and it has significant potential as an alternative means of recombinant protein production because it transports fully folded proteins.

View Article and Find Full Text PDF

The human (h) placental lactogenic hormone chorionic somatomammotropin (CS) is highly produced during pregnancy and acts as a metabolic adaptor in response to maternal insulin resistance. Maternal obesity can exacerbate this "resistance", and a >75% decrease in CS RNA levels was observed in term placentas from obese vs. lean women.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!