This review describes human and rodent-derived cell lines and xenografts developed over the last five decades that are suitable or potentially suitable models for paraganglioma-pheochromocytoma research. We outline the strengths and weaknesses of various models and emphasize the recurring theme that, despite the major challenges involved, more effort is required in the search for valid human and animal cell models of paraganglioma-pheochromocytoma, particularly those relevant to cancers carrying a mutation in one of the succinate dehydrogenase genes. Despite many setbacks, the recent development of a potentially important new model, the RS0 cell line, gives reason for optimism regarding the future of models in the paraganglioma-pheochromocytoma field. We also note that classic approaches to cell line derivation such as SV40-mediated immortalization and newer approaches such as organoid culture or iPSCs have been insufficiently explored. As many existing cell lines have been poorly characterized, we provide recommendations for reporting of paraganglioma and pheochromocytoma cell lines, including the strong recommendation that cell lines are made widely available via the ATCC or a similar cell repository. Basic research in paraganglioma-pheochromocytoma is currently transitioning from the analysis of genetics to the analysis of disease mechanisms and the clinically exploitable vulnerabilities of tumors. A successful transition will require many more disease-relevant human and animal models to ensure continuing progress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1530/ERC-19-0434 | DOI Listing |
Cancer Biol Ther
December 2025
Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFCell Biosci
January 2025
School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong S.A.R., China.
Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.
View Article and Find Full Text PDFJ Transl Med
January 2025
Medical School of Nanjing University, Nanjing, 210093, China.
Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!