Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue and explore their spatial interactions, enabling deep understanding of tissue functionality. To understand what causes or deteriorates a disease and identify related biomarkers, clinical researchers regularly perform large-scale cohort studies, requiring the comparison of such data at cellular level. In such studies, with little a-priori knowledge of what to expect in the data, explorative data analysis is a necessity. Here, we present an interactive visual analysis workflow for the comparison of cohorts of spatially-resolved omics-data. Our workflow allows the comparative analysis of two cohorts based on multiple levels-of-detail, from simple abundance of contained cell types over complex co-localization patterns to individual comparison of complete tissue images. As a result, the workflow enables the identification of cohort-differentiating features, as well as outlier samples at any stage of the workflow. During the development of the workflow, we continuously consulted with domain experts. To show the effectiveness of the workflow, we conducted multiple case studies with domain experts from different application areas and with different data modalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2020.3030336 | DOI Listing |
Nat Commun
January 2025
Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
Spatially resolved omics (SRO) technologies enable the identification of cell types while preserving their organization within tissues. Application of such technologies offers the opportunity to delineate cell-type spatial relationships, particularly across different length scales, and enhance our understanding of tissue organization and function. To quantify such multi-scale cell-type spatial relationships, we present CRAWDAD, Cell-type Relationship Analysis Workflow Done Across Distances, as an open-source R package.
View Article and Find Full Text PDFNat Commun
January 2025
Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
Recent advancements in biological technologies have enabled the measurement of spatially resolved multi-omics data, yet computational algorithms for this purpose are scarce. Existing tools target either single omics or lack spatial integration. We generate a graph neural network algorithm named COSMOS to address this gap and demonstrated the superior performance of COSMOS in domain segmentation, visualization, and spatiotemporal map for spatially resolved multi-omics data integration tasks.
View Article and Find Full Text PDFFront Oncol
November 2024
Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
Recent advances in spatial omics technologies have enabled new approaches for analyzing tissue morphology, cell composition, and biomolecule expression patterns . These advances are promoting the development of new computational tools and quantitative techniques in the emerging field of digital pathology. In this review, we survey current trends in the development of computational methods for spatially mapped omics data analysis using digitized histopathology slides and supplementary materials, with an emphasis on tools and applications relevant to genitourinary oncological research.
View Article and Find Full Text PDFCommun Biol
October 2024
Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.
Spatially resolved molecular assays provide high dimensional genetic, transcriptomic, proteomic, and epigenetic information in situ and at various resolutions. Pairing these data across modalities with histological features enables powerful studies of tissue pathology in the context of an intact microenvironment and tissue structure. Increasing dimensions across molecular analytes and samples require new data science approaches to functionally annotate spatially resolved molecular data.
View Article and Find Full Text PDFbioRxiv
September 2024
Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21211.
Spatially resolved omics (SRO) technologies enable the identification of cell types while preserving their organization within tissues. Application of such technologies offers the opportunity to delineate cell-type spatial relationships, particularly across different length scales, and enhance our understanding of tissue organization and function. To quantify such multi-scale cell-type spatial relationships, we developed CRAWDAD, Cell-type Relationship Analysis Workflow Done Across Distances, as an open-source R package with source code and additional documentation at https://jef.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!