A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing Open-Circuit Voltage of High-Efficiency Nonfullerene Ternary Solar Cells with a Star-Shaped Acceptor. | LitMetric

The ternary strategy has been widely used in high-efficiency organic solar cells (OSCs). Herein, we successfully incorporated a mid-band-gap star-shaped acceptor, FBTIC, as the third component into the PM6/Y6 binary blend film, which not only achieved a panchromatic absorption but also significantly improved the open-circuit voltage () of the devices due to the high-lying lowest unoccupied molecular orbital (LUMO) of the FBTIC. Morphology characterizations show that star-shaped FBTIC molecules are amorphously distributed in the ternary system, and the finely tuned ternary film morphology facilitates the exciton dissociation and charge collection in ternary devices. As a result, the best PM6/Y6/FBTIC-based ternary OSCs achieved a power conversion efficiency (PCE) of 16.7% at a weight ratio of 1.0:1.0:0.2.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c14612DOI Listing

Publication Analysis

Top Keywords

open-circuit voltage
8
solar cells
8
star-shaped acceptor
8
ternary
6
enhancing open-circuit
4
voltage high-efficiency
4
high-efficiency nonfullerene
4
nonfullerene ternary
4
ternary solar
4
cells star-shaped
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!